Do you want to publish a course? Click here

Approximation algorithms for general cluster routing problem

58   0   0.0 ( 0 )
 Added by Gregory Gutin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Graph routing problems have been investigated extensively in operations research, computer science and engineering due to their ubiquity and vast applications. In this paper, we study constant approximation algorithms for some variations of the general cluster routing problem. In this problem, we are given an edge-weighted complete undirected graph $G=(V,E,c),$ whose vertex set is partitioned into clusters $C_{1},dots ,C_{k}.$ We are also given a subset $V$ of $V$ and a subset $E$ of $E.$ The weight function $c$ satisfies the triangle inequality. The goal is to find a minimum cost walk $T$ that visits each vertex in $V$ only once, traverses every edge in $E$ at least once and for every $iin [k]$ all vertices of $C_i$ are traversed consecutively.



rate research

Read More

We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and message complexities. The algorithms are based on the greedy approach of assigning the best item to the knapsack with the largest capacity. These algorithms obtain a solution with a bound of $frac{1}{n+1}$ times the optimum solution, with either $mathcal{O}left(mlog nright)$ time and $mathcal{O}left(m nright)$ messages, or $mathcal{O}left(mright)$ time and $mathcal{O}left(mn^{2}right)$ messages.
We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack. In this setting, we are given a set of $n$ items, each associated with a non-negative weight, and $T$ time periods with non-decreasing capacities $W_1 leq dots leq W_T$. When item $i$ is inserted at time $t$, we gain a profit of $p_{it}$; however, this item remains in the knapsack for all subsequent periods. The goal is to decide if and when to insert each item, subject to the time-dependent capacity constraints, with the objective of maximizing our total profit. Interestingly, this setting subsumes as special cases a number of recently-studied incremental knapsack problems, all known to be strongly NP-hard. Our first contribution comes in the form of a polynomial-time $(frac{1}{2}-epsilon)$-approximation for the generalized incremental knapsack problem. This result is based on a reformulation as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys-Tardos algorithm for the generalized assignment problem. Combined with further enumeration-based self-reinforcing ideas and newly-revealed structural properties of nearly-optimal solutions, we turn our basic algorithm into a quasi-polynomial time approximation scheme (QPTAS). Hence, under widely believed complexity assumptions, this finding rules out the possibility that generalized incremental knapsack is APX-hard.
We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem. Given an asymmetric metric cost between n vertices, the problem is to find a Hamiltonian cycle that minimizes its bottleneck (or maximum-length edge) cost. We achieve an O(log n / log log n) approximation performance guarantee by giving a novel algorithmic technique to shortcut Eulerian circuits while bounding the lengths of the shortcuts needed. This allows us to build on a related result of Asadpour, Goemans, Mk{a}dry, Oveis Gharan, and Saberi to obtain this guarantee. Furthermore, we show how our technique yields stronger approximation bounds in some cases, such as the bounded orientable genus case studied by Oveis Gharan and Saberi. We also explore the possibility of further improvement upon our main result through a comparison to the symmetric counterpart of the problem.
Given a graph $G = (V,E)$ and a subset $T subseteq V$ of terminals, a emph{Steiner tree} of $G$ is a tree that spans $T$. In the vertex-weighted Steiner tree (VST) problem, each vertex is assigned a non-negative weight, and the goal is to compute a minimum weight Steiner tree of $G$. We study a natural generalization of the VST problem motivated by multi-level graph construction, the emph{vertex-weighted grade-of-service Steiner tree problem} (V-GSST), which can be stated as follows: given a graph $G$ and terminals $T$, where each terminal $v in T$ requires a facility of a minimum grade of service $R(v)in {1,2,ldotsell}$, compute a Steiner tree $G$ by installing facilities on a subset of vertices, such that any two vertices requiring a certain grade of service are connected by a path in $G$ with the minimum grade of service or better. Facilities of higher grade are more costly than facilities of lower grade. Multi-level variants such as this one can be useful in network design problems where vertices may require facilities of varying priority. While similar problems have been studied in the edge-weighted case, they have not been studied as well in the more general vertex-weighted case. We first describe a simple heuristic for the V-GSST problem whose approximation ratio depends on $ell$, the number of grades of service. We then generalize the greedy algorithm of [Klein & Ravi, 1995] to show that the V-GSST problem admits a $(2 ln |T|)$-approximation, where $T$ is the set of terminals requiring some facility. This result is surprising, as it shows that the (seemingly harder) multi-grade problem can be approximated as well as the VST problem, and that the approximation ratio does not depend on the number of grades of service.
The restless bandit problem is one of the most well-studied generalizations of the celebrated stochastic multi-armed bandit problem in decision theory. In its ultimate generality, the restless bandit problem is known to be PSPACE-Hard to approximate to any non-trivial factor, and little progress has been made despite its importance in modeling activity allocation under uncertainty. We consider a special case that we call Feedback MAB, where the reward obtained by playing each of n independent arms varies according to an underlying on/off Markov process whose exact state is only revealed when the arm is played. The goal is to design a policy for playing the arms in order to maximize the infinite horizon time average expected reward. This problem is also an instance of a Partially Observable Markov Decision Process (POMDP), and is widely studied in wireless scheduling and unmanned aerial vehicle (UAV) routing. Unlike the stochastic MAB problem, the Feedback MAB problem does not admit to greedy index-based optimal policies. We develop a novel and general duality-based algorithmic technique that yields a surprisingly simple and intuitive 2+epsilon-approximate greedy policy to this problem. We then define a general sub-class of restless bandit problems that we term Monotone bandits, for which our policy is a 2-approximation. Our technique is robust enough to handle generalizations of these problems to incorporate various side-constraints such as blocking plays and switching costs. This technique is also of independent interest for other restless bandit problems. By presenting the first (and efficient) O(1) approximations for non-trivial instances of restless bandits as well as of POMDPs, our work initiates the study of approximation algorithms in both these contexts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا