No Arabic abstract
We use the latest measurements of the Milky Way satellite population from the Dark Energy Survey and Pan-STARRS1 to infer the most stringent astrophysical bound to date on velocity-dependent interactions between dark matter particles and protons. We model the momentum-transfer cross section as a power law of the relative particle velocity $v$ with a free normalizing amplitude, $sigma_text{MT}=sigma_0 v^n$, to broadly capture the interactions arising within the non-relativistic effective theory of dark matter-proton scattering. The scattering leads to a momentum and heat transfer between the baryon and dark matter fluids in the early Universe, ultimately erasing structure on small physical scales and reducing the abundance of low-mass halos that host dwarf galaxies today. From the consistency of observations with the cold collisionless dark matter paradigm, using a new method that relies on the most robust predictions of the linear perturbation theory, we infer an upper limit on $sigma_0$ of $1.4times10^{-23}$, $2.1times10^{-19}$, and $1.0times10^{-12} mathrm{cm}^2$, for interaction models with $n=2,4,6$, respectively, for a dark matter particle mass of $10 mathrm{MeV}$. These results improve observational limits on dark matter--proton scattering by orders of magnitude and thus provide an important guide for viable sub-GeV dark matter candidates.
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and marginalizes over uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm and yield the strongest cosmological constraints to date on particle models of warm, interacting, and fuzzy dark matter. At $95%$ confidence, we report limits on (i) the mass of thermal relic warm DM, $m_{rm WDM} > 6.5 mathrm{keV}$ (free-streaming length, $lambda_{rm{fs}} lesssim 10,h^{-1} mathrm{kpc}$), (ii) the velocity-independent DM-proton scattering cross section, $sigma_{0} < 8.8times 10^{-29} mathrm{cm}^{2}$ for a $100 mathrm{MeV}$ DM particle mass (DM-proton coupling, $c_p lesssim (0.3 mathrm{GeV})^{-2}$), and (iii) the mass of fuzzy DM, $m_{phi}> 2.9 times 10^{-21} mathrm{eV}$ (de Broglie wavelength, $lambda_{rm{dB}} lesssim 0.5 mathrm{kpc}$). These constraints are complementary to other observational and laboratory constraints on DM properties.
In the thermal dark matter (DM) paradigm, primordial interactions between DM and Standard Model particles are responsible for the observed DM relic density. In Boehm et al. (2014), we showed that weak-strength interactions between DM and radiation (photons or neutrinos) can erase small-scale density fluctuations, leading to a suppression of the matter power spectrum compared to the collisionless cold DM (CDM) model. This results in fewer DM subhaloes within Milky Way-like DM haloes, implying a reduction in the abundance of satellite galaxies. Here we use very high resolution N-body simulations to measure the dynamics of these subhaloes. We find that when interactions are included, the largest subhaloes are less concentrated than their counterparts in the collisionless CDM model and have rotation curves that match observational data, providing a new solution to the too big to fail problem.
We show that subhalos falling into the Milky Way create a flow of tidally-stripped debris particles near the galactic center with characteristic velocity behavior. In the Via Lactea-II N-body simulation, this unvirialized component constitutes a few percent of the local density and has velocities peaked at 340 km/s in the solar neighborhood. Such velocity substructure has important implications for surveys of low-metallicity stars, as well as direct detection experiments sensitive to dark matter with large scattering thresholds.
We use new kinematic data from the ultra-faint Milky Way satellite Segue 1 to model its dark matter distribution and derive upper limits on the dark matter annihilation cross-section. Using gamma-ray flux upper limits from the Fermi satellite and MAGIC, we determine cross-section exclusion regions for dark matter annihilation into a variety of different particles including charged leptons. We show that these exclusion regions are beginning to probe the regions of interest for a dark matter interpretation of the electron and positron fluxes from PAMELA, Fermi, and HESS, and that future observations of Segue 1 have strong prospects for testing such an interpretation. We additionally discuss prospects for detecting annihilation with neutrinos using the IceCube detector, finding that in an optimistic scenario a few neutrino events may be detected. Finally we use the kinematic data to model the Segue 1 dark matter velocity dispersion and constrain Sommerfeld enhanced models.
We probe the self-interactions of dark matter using observational data of relaxed galaxy groups and clusters. Our analysis uses the Jeans formalism and considers a wider range of systematic effects than in previous work, including adiabatic contraction and stellar anisotropy, to robustly constrain the self-interaction cross section. For both groups and clusters, our results show a mild preference for a nonzero cross section compared with cold collisionless dark matter. Our groups result, $sigma/m=0.5pm0.2~mathrm{cm}^2/mathrm{g}$, places the first constraint on self-interacting dark matter (SIDM) at an intermediate scale between galaxies and massive clusters. Our clusters result is $sigma/m=0.19pm0.09~mathrm{cm}^2/mathrm{g}$, with an upper limit of $sigma / m < 0.35~mathrm{cm}^2/mathrm{g}$ (95% CL). Thus, our results disfavor a velocity-independent cross section of order $1~mathrm{cm}^2/mathrm{g}$ or larger needed to address small scale structure problems in galaxies, but are consistent with a velocity-dependent cross section that decreases with increasing scattering velocity. Comparing the cross sections with and without the effect of adiabatic contraction, we find that adiabatic contraction produces slightly larger values for our data sample, but they are consistent at the $1sigma$ level. Finally, to validate our approach, we apply our Jeans analysis to a sample of mock data generated from SIDM-plus-baryons simulations with $sigma/m = 1~mathrm{cm}^2/mathrm{g}$. This is the first test of the Jeans model at the level of stellar and lensing observables directly measured from simulations. We find our analysis gives a robust determination of the cross section, as well as consistently inferring the true baryon and dark matter density profiles.