Do you want to publish a course? Click here

Velocity-dependent interacting dark energy and dark matter with a Lagrangian description of perfect fluids

317   0   0.0 ( 0 )
 Added by Dario Bettoni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a cosmological scenario where the dark sector is described by two perfect fluids that interact through a velocity-dependent coupling. This coupling gives rise to an interaction in the dark sector driven by the relative velocity of the components, thus making the background evolution oblivious to the interaction and only the perturbed Euler equations are affected at first order. We obtain the equations governing this system with the Schutz-Sorkin Lagrangian formulation for perfect fluids and derive the corresponding stability conditions to avoid ghosts and Laplacian instabilities. As a particular example, we study a model where dark energy behaves as a radiation fluid at high redshift while it effectively becomes a cosmological constant in the late Universe. Within this scenario, we show that the interaction of both dark components leads to a suppression of the dark matter clustering at late times. We also argue the possibility that this suppression of clustering together with the additional dark radiation at early times can simultaneously alleviate the $sigma_8$ and $H_0$ tensions.



rate research

Read More

We investigate the appropriateness of the use of different Lagrangians to describe various components of the cosmic energy budget, discussing the degeneracies between them in the absence of nonminimal couplings to gravity or other fields, and clarifying some misconceptions in the literature. We further demonstrate that these degeneracies are generally broken for nonminimal coupled fluids, in which case the identification of the appropriate on-shell Lagrangian may become essential in order characterize the overall dynamics. We then show that models with the same on-shell Lagrangian may have different proper energy densities and use this result to map dark energy models into unified dark energy models in which dark matter and dark energy are described by the same perfect fluid. We determine the correspondence between their equation of state parameters and sound speeds, briefly discussing the linear sound speed problem of unified dark energy models as well as a possible way out associated to the nonlinear dynamics.
183 - Bo-Yu Pu , Xiao-Dong Xu , Bin Wang 2014
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the linear approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the coupling between dark sectors by confronting to different observations.
We study the effect of an explicit interaction between two scalar fields components describing dark matter in the context of a recent proposal framework for interaction. We find that, even assuming a very small coupling, it is sufficient to explain the observational effects of a cosmological constant, and also overcome the problems of the $Lambda$CDM model without assuming an exotic dark energy.
It is well known that, in the context of general relativity, an unknown kind of matter that must violate the strong energy condition is required to explain the current accelerated phase of expansion of the Universe. This unknown component is called dark energy and is characterized by an equation of state parameter $w=p/rho<-1/3$. Thermodynamic stability requires that $3w-dln |w|/dln age0$ and positiveness of entropy that $wge-1$. In this paper we proof that we cannot obtain a differentiable function $w(a)$ to represent the dark energy that satisfies these conditions trough the entire history of the Universe.
In this work we have used the recent cosmic chronometers data along with the latest estimation of the local Hubble parameter value, $H_0$ at 2.4% precision as well as the standard dark energy probes, such as the Supernovae Type Ia, baryon acoustic oscillation distance measurements, and cosmic microwave background measurements (PlanckTT $+$ lowP) to constrain a dark energy model where the dark energy is allowed to interact with the dark matter. A general equation of state of dark energy parametrized by a dimensionless parameter `$beta$ is utilized. From our analysis, we find that the interaction is compatible with zero within the 1$sigma$ confidence limit. We also show that the same evolution history can be reproduced by a small pressure of the dark matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا