No Arabic abstract
Acousto-optic interactions involving propagating phonons can break the time-reversal and frequency-modulation symmetry of light. However, conventional acousto-optic modulators based on bulk materials have frequency bandwidth limited to hundreds of megahertz due to their large structural sizes. Here, we experimentally demonstrate gigahertz single-sideband acousto-optic modulation on an etchless lithium niobate integrated platform by using photonic bound states in the continuum. The upper- or lower-sideband modulation of light can be obtained conveniently by choosing specific combinations of input and output channels. Under this scheme, we have realized a 3-GHz frequency shifter, which operates in the C-band with a 3-dB bandwidth of ~35 nm. The extinction ratios of the upper(lower)-sideband modulated light to the lower(upper)-sideband modulated and unmodulated light are >44 (47) and 25 (23) dB in the 3-dB operating bandwidth. The frequency-shifted light can be further processed with amplitude and frequency modulation. Therefore, the demonstrated gigahertz single-sideband acousto-optic modulation can enable many photonic applications such as optical signal processing, sensing, and ion trapping.
We demonstrate acousto-optic phase modulators in X-cut lithium niobate films on sapphire, detailing the dependence of the piezoelectric and optomechanical coupling coefficients on the crystal orientation. This new platform supports highly confined, strongly piezoelectric mechanical waves without suspensions, making it a promising candidate for broadband and efficient integrated acousto-optic devices, circuits, and systems.
Electro-optic phase modulators are critical components in modern communication, microwave photonic, and quantum photonic systems. Important for these applications is to achieve modulators with low half-wave voltage at high frequencies. Here we demonstrate an integrated phase modulator, based on a thin-film lithium niobate platform, that simultaneously features small on-chip loss (~ 1 dB) and low half-wave voltage over a large spectral range (3.5 - 4.5 V at 5 - 40 GHz). By driving the modulator with a strong 30-GHz microwave signal corresponding to around four half-wave voltages, we generate an optical frequency comb consisting of over 40 sidebands spanning 10 nm in the telecom L-band. The high electro-optic performance combined with the high RF power-handling ability (3.1 W) of our integrated phase modulator are crucial for future photonics and microwave systems.
Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolithic LN PICs fabricated on 4- and 6-inch wafers with deep ultraviolet lithography and show smooth and uniform etching, achieving 0.27 dB/cm optical propagation loss on wafer-scale. Our results show that LN PICs are fundamentally scalable and can be highly cost-effective.
Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metrics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here we make an important step towards miniaturizing functional components on this platform, reporting probably the smallest high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz/V, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58 $mu {rm m}^3$. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb/s with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics.
Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly > 10 dB) dominates the total insertion losses of typical LN photonic integrated circuits, where on-chip propagation losses can be as low as 0.03 - 0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetric guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.