Do you want to publish a course? Click here

Radiation effects on NDL prototype LGAD sensors after proton irradiation

147   0   0.0 ( 0 )
 Added by Xin Shi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the radiation effects of the Low Gain Avalanche Detector (LGAD) sensors developed by the Institute of High Energy Physics (IHEP) and the Novel Device Laboratory (NDL) of Beijing Normal University in China. These new sensors have been irradiated at the China Institute of Atomic Energy (CIAE) using 100 MeV proton beam with five different fluences from 7$times10^{14}$ $n_{eq}/cm^2$ up to 4.5$times10^{15}$ $n_{eq}/cm^2$. The result shows the effective doping concentration in the gain layer decreases with the increase of irradiation fluence, as expected by the acceptor removal mechanism. By comparing data and model gives the acceptor removal coefficient $c_{A}$ = $(6.07pm0.70)times10^{-16}~cm^2$, which indicates the NDL sensor has fairly good radiation resistance.

rate research

Read More

280 - Mengzhao Li , Yunyun Fan , Bo Liu 2021
The performances of Low Gain Avalanche diode (LGAD) sensors from a neutron irradiation campaign with fluences of 0.8 x 10^15, 15 x 10^15 and 2.5 x 10^15 neq/cm2 are reported in this article. These LGAD sensors are developed by the Institute of High Energy Physics, Chinese Academy of Sciences and the Novel Device Laboratory for the High Granularity Timing Detector of the High Luminosity Large Hadron Collider. The timing resolution and collected charge of the LGAD sensors were measured with electrons from a beta source. After irradiation with a fluence of 2.5 x 10^15 neq/cm2, the collected charge decreases from 40 fC to 7 fC, the signal-to-noise ratio deteriorates from 48 to 12, and the timing resolution increases from 29 ps to 39 ps.
The timing measurement of charged particles using silicon detector is widely used in synchrotron source as X-ray detectors, in time-of-flight mass spectrometer and especially in large collider experiment. To reduce the drastically event pile-up of high-luminosity large hadron collider (HL-LHC), a new concept of 4-dimension detector including timing and positon has been proposed. One of the candidates for the 4-dimension detector is a new kind of silicon detector called Low Gain Avalanche Diode (LGAD). In China, Institute of High Energy Physics (IHEP) Chinese Academic Science cooperated with Novel Device Laboratory (NDL) at Beijing Normal University have fabricated a series of LGAD sensors. The characterization of the first prototype of IHEP-NDL sensors is presented including leakage current and sensor capacitance measurement. A test system for the time resolution of jitter term using pico-second laser and fast sampling rate oscilloscope is also setup, and the time resolution of 10 ps can be achieved with these sensors.
We report on the results of a radiation campaign with neutrons and protons of Low Gain Avalanche Detectors (LGAD) produced by Hamamatsu (HPK) as prototypes for the High-Granularity Timing Detector (HGTD) in ATLAS. Sensors with an active thickness of 50~$mu$m were irradiated in steps of roughly 2$times$ up to a fluence of $3times10^{15}~mathrm{n_{eq}cm^{-2}}$. As a function of the fluence, the collected charge and time resolution of the irradiated sensors will be reported for operation at $-30^{circ}$.
The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector (LGAD) technology will cover the pseudo-rapidity region of $2.4<|eta|<4.0$ with two end caps on each side and a total area of 6.4 $m^2$. The timing performance can be improved by implanting an internal gain layer that can produce signal with a fast rising edge, which improve significantly the signal-to-noise ratio. The required average timing resolution per track for a minimum-ionising particle is 30 ps at the start and 50 ps at the end of the HL-LHC operation. This is achieved with several layers of LGAD. The innermost region of the detector would accumulate a 1 MeV-neutron equivalent fluence up to $2.5 times 10^{15} cm^{-2}$ before being replaced during the scheduled shutdowns. The addition of this new detector is expected to play an important role in the mitigation of high pile-up at the HL-LHC. The layout and performance of the vario
To meet the timing resolution requirement of up-coming High Luminosity LHC (HL-LHC), a new detector based on the Low-Gain Avalanche Detector(LGAD), High-Granularity Timing Detector (HGTD), is under intensive research in ATLAS. Two types of IHEP-NDL LGADs(BV60 and BV170) for this update is being developed by Institute of High Energy Physics (IHEP) of Chinese Academic of Sciences (CAS) cooperated with Novel Device Laboratory (NDL) of Beijing Normal University and they are now under detailed study. These detectors are tested with $5GeV$ electron beam at DESY. A SiPM detector is chosen as a reference detector to get the timing resolution of LGADs. The fluctuation of time difference between LGAD and SiPM is extracted by fitting with a Gaussian function. Constant fraction discriminator (CFD) method is used to mitigate the effect of time walk. The timing resolution of $41 pm 1 ps$ and $63 pm 1 ps$ are obtained for BV60 and BV170 respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا