No Arabic abstract
Modeling players behaviors in games has gained increased momentum in the past few years. This area of research has wide applications, including modeling learners and understanding player strategies, to mention a few. In this paper, we present a new methodology, called Interactive Behavior Analytics (IBA), comprised of two visualization systems, a labeling mechanism, and abstraction algorithms that use Dynamic Time Warping and clustering algorithms. The methodology is packaged in a seamless interface to facilitate knowledge discovery from game data. We demonstrate the use of this methodology with data from two multiplayer team-based games: BoomTown, a game developed by Gallup, and DotA 2. The results of this work show the effectiveness of this method in modeling, and developing human-interpretable models of team and individual behavior.
While work in fields of CSCW (Computer Supported Collaborative Work), Psychology and Social Sciences have progressed our understanding of team processes and their effect performance and effectiveness, current methods rely on observations or self-report, with little work directed towards studying team processes with quantifiable measures based on behavioral data. In this report we discuss work tackling this open problem with a focus on understanding individual differences and its effect on team adaptation, and further explore the effect of these factors on team performance as both an outcome and a process. We specifically discuss our contribution in terms of methods that augment survey data and behavioral data that allow us to gain more insight on team performance as well as develop a method to evaluate adaptation and performance across and within a group. To make this problem more tractable we chose to focus on specific types of environments, Alternate Reality Games (ARGs), and for several reasons. First, these types of games involve setups that are similar to a real-world setup, e.g., communication through slack or email. Second, they are more controllable than real environments allowing us to embed stimuli if needed. Lastly, they allow us to collect data needed to understand decisions and communications made through the entire duration of the experience, which makes team processes more transparent than otherwise possible. In this report we discuss the work we did so far and demonstrate the efficacy of the approach.
Communication consists of both meta-information as well as content. Currently, the automated analysis of such data often focuses either on the network aspects via social network analysis or on the content, utilizing methods from text-mining. However, the first category of approaches does not leverage the rich content information, while the latter ignores the conversation environment and the temporal evolution, as evident in the meta-information. In contradiction to communication research, which stresses the importance of a holistic approach, both aspects are rarely applied simultaneously, and consequently, their combination has not yet received enough attention in automated analysis systems. In this work, we aim to address this challenge by discussing the difficulties and design decisions of such a path as well as contribute CommAID, a blueprint for a holistic strategy to communication analysis. It features an integrated visual analytics design to analyze communication networks through dynamics modeling, semantic pattern retrieval, and a user-adaptable and problem-specific machine learning-based retrieval system. An interactive multi-level matrix-based visualization facilitates a focused analysis of both network and content using inline visuals supporting cross-checks and reducing context switches. We evaluate our approach in both a case study and through formative evaluation with eight law enforcement experts using a real-world communication corpus. Results show that our solution surpasses existing techniques in terms of integration level and applicability. With this contribution, we aim to pave the path for a more holistic approach to communication analysis.
The vision for smart city imperiously appeals to the implementation of Internet-of-Things (IoT), some features of which, such as massive access and bursty short packet transmissions, require new methods to enable the cellular system to seamlessly support its integration. Rigorous theoretical analysis is indispensable to obtain constructive insight for the networking design of massive access. In this paper, we propose and define the notion of massive and sporadic access (MSA) to quantitatively describe the massive access of IoT devices. We evaluate the temporal correlation of interference and successful transmission events, and verify that such correlation is negligible in the scenario of MSA. In view of this, in order to resolve the difficulty in any precise spatio-temporal analysis where complex interactions persist among the queues, we propose an approximation that all nodes are moving so fast that their locations are independent at different time slots. Furthermore, we compare the original static network and the equivalent network with high mobility to demonstrate the effectiveness of the proposed approximation approach. The proposed approach is promising for providing a convenient and general solution to evaluate and design the IoT network with massive and sporadic access.
This paper presents our solution to the AVA-Kinetics Crossover Challenge of ActivityNet workshop at CVPR 2021. Our solution utilizes multiple types of relation modeling methods for spatio-temporal action detection and adopts a training strategy to integrate multiple relation modeling in end-to-end training over the two large-scale video datasets. Learning with memory bank and finetuning for long-tailed distribution are also investigated to further improve the performance. In this paper, we detail the implementations of our solution and provide experiments results and corresponding discussions. We finally achieve 40.67 mAP on the test set of AVA-Kinetics.
In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video pre-processing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition by ca. 5% and 15% respectively.