Do you want to publish a course? Click here

Water Detection through Spatio-Temporal Invariant Descriptors

290   0   0.0 ( 0 )
 Added by Pascal Mettes
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video pre-processing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition by ca. 5% and 15% respectively.



rate research

Read More

With only bounding-box annotations in the spatial domain, existing video scene text detection (VSTD) benchmarks lack temporal relation of text instances among video frames, which hinders the development of video text-related applications. In this paper, we systematically introduce a new large-scale benchmark, named as STVText4, a well-designed spatial-temporal detection metric (STDM), and a novel clustering-based baseline method, referred to as Temporal Clustering (TC). STVText4 opens a challenging yet promising direction of VSTD, termed as ST-VSTD, which targets at simultaneously detecting video scene texts in both spatial and temporal domains. STVText4 contains more than 1.4 million text instances from 161,347 video frames of 106 videos, where each instance is annotated with not only spatial bounding box and temporal range but also four intrinsic attributes, including legibility, density, scale, and lifecycle, to facilitate the community. With continuous propagation of identical texts in the video sequence, TC can accurately output the spatial quadrilateral and temporal range of the texts, which sets a strong baseline for ST-VSTD. Experiments demonstrate the efficacy of our method and the great academic and practical value of the STVText4. The dataset and code will be available soon.
Spatio-temporal action detection in videos requires localizing the action both spatially and temporally in the form of an action tube. Nowadays, most spatio-temporal action detection datasets (e.g. UCF101-24, AVA, DALY) are annotated with action tubes that contain a single person performing the action, thus the predominant action detection models simply employ a person detection and tracking pipeline for localization. However, when the action is defined as an interaction between multiple objects, such methods may fail since each bounding box in the action tube contains multiple objects instead of one person. In this paper, we study the spatio-temporal action detection problem with multi-object interaction. We introduce a new dataset that is annotated with action tubes containing multi-object interactions. Moreover, we propose an end-to-end spatio-temporal action detection model that performs both spatial and temporal regression simultaneously. Our spatial regression may enclose multiple objects participating in the action. During test time, we simply connect the regressed bounding boxes within the predicted temporal duration using a simple heuristic. We report the baseline results of our proposed model on this new dataset, and also show competitive results on the standard benchmark UCF101-24 using only RGB input.
Video anomaly detection has gained significant attention due to the increasing requirements of automatic monitoring for surveillance videos. Especially, the prediction based approach is one of the most studied methods to detect anomalies by predicting frames that include abnormal events in the test set after learning with the normal frames of the training set. However, a lot of prediction networks are computationally expensive owing to the use of pre-trained optical flow networks, or fail to detect abnormal situations because of their strong generative ability to predict even the anomalies. To address these shortcomings, we propose spatial rotation transformation (SRT) and temporal mixing transformation (TMT) to generate irregular patch cuboids within normal frame cuboids in order to enhance the learning of normal features. Additionally, the proposed patch transformation is used only during the training phase, allowing our model to detect abnormal frames at fast speed during inference. Our model is evaluated on three anomaly detection benchmarks, achieving competitive accuracy and surpassing all the previous works in terms of speed.
162 - Jie Wu , Wei Zhang , Guanbin Li 2021
In this paper, we introduce a novel task, referred to as Weakly-Supervised Spatio-Temporal Anomaly Detection (WSSTAD) in surveillance video. Specifically, given an untrimmed video, WSSTAD aims to localize a spatio-temporal tube (i.e., a sequence of bounding boxes at consecutive times) that encloses the abnormal event, with only coarse video-level annotations as supervision during training. To address this challenging task, we propose a dual-branch network which takes as input the proposals with multi-granularities in both spatial-temporal domains. Each branch employs a relationship reasoning module to capture the correlation between tubes/videolets, which can provide rich contextual information and complex entity relationships for the concept learning of abnormal behaviors. Mutually-guided Progressive Refinement framework is set up to employ dual-path mutual guidance in a recurrent manner, iteratively sharing auxiliary supervision information across branches. It impels the learned concepts of each branch to serve as a guide for its counterpart, which progressively refines the corresponding branch and the whole framework. Furthermore, we contribute two datasets, i.e., ST-UCF-Crime and STRA, consisting of videos containing spatio-temporal abnormal annotations to serve as the benchmarks for WSSTAD. We conduct extensive qualitative and quantitative evaluations to demonstrate the effectiveness of the proposed approach and analyze the key factors that contribute more to handle this task.
While Water Treatment Networks (WTNs) are critical infrastructures for local communities and public health, WTNs are vulnerable to cyber attacks. Effective detection of attacks can defend WTNs against discharging contaminated water, denying access, destroying equipment, and causing public fear. While there are extensive studies in WTNs attack detection, they only exploit the data characteristics partially to detect cyber attacks. After preliminary exploring the sensing data of WTNs, we find that integrating spatio-temporal knowledge, representation learning, and detection algorithms can improve attack detection accuracy. To this end, we propose a structured anomaly detection framework to defend WTNs by modeling the spatio-temporal characteristics of cyber attacks in WTNs. In particular, we propose a spatio-temporal representation framework specially tailored to cyber attacks after separating the sensing data of WTNs into a sequence of time segments. This framework has two key components. The first component is a temporal embedding module to preserve temporal patterns within a time segment by projecting the time segment of a sensor into a temporal embedding vector. We then construct Spatio-Temporal Graphs (STGs), where a node is a sensor and an attribute is the temporal embedding vector of the sensor, to describe the state of the WTNs. The second component is a spatial embedding module, which learns the final fused embedding of the WTNs from STGs. In addition, we devise an improved one class-SVM model that utilizes a new designed pairwise kernel to detect cyber attacks. The devised pairwise kernel augments the distance between normal and attack patterns in the fused embedding space. Finally, we conducted extensive experimental evaluations with real-world data to demonstrate the effectiveness of our framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا