Do you want to publish a course? Click here

Advancing Methodology for Social Science Research Using Alternate Reality Games: Proof-of-Concept Through Measuring Individual Differences and Adaptability and their impact on Team Performance

58   0   0.0 ( 0 )
 Added by Magy Seif El-Nasr
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While work in fields of CSCW (Computer Supported Collaborative Work), Psychology and Social Sciences have progressed our understanding of team processes and their effect performance and effectiveness, current methods rely on observations or self-report, with little work directed towards studying team processes with quantifiable measures based on behavioral data. In this report we discuss work tackling this open problem with a focus on understanding individual differences and its effect on team adaptation, and further explore the effect of these factors on team performance as both an outcome and a process. We specifically discuss our contribution in terms of methods that augment survey data and behavioral data that allow us to gain more insight on team performance as well as develop a method to evaluate adaptation and performance across and within a group. To make this problem more tractable we chose to focus on specific types of environments, Alternate Reality Games (ARGs), and for several reasons. First, these types of games involve setups that are similar to a real-world setup, e.g., communication through slack or email. Second, they are more controllable than real environments allowing us to embed stimuli if needed. Lastly, they allow us to collect data needed to understand decisions and communications made through the entire duration of the experience, which makes team processes more transparent than otherwise possible. In this report we discuss the work we did so far and demonstrate the efficacy of the approach.



rate research

Read More

Modeling players behaviors in games has gained increased momentum in the past few years. This area of research has wide applications, including modeling learners and understanding player strategies, to mention a few. In this paper, we present a new methodology, called Interactive Behavior Analytics (IBA), comprised of two visualization systems, a labeling mechanism, and abstraction algorithms that use Dynamic Time Warping and clustering algorithms. The methodology is packaged in a seamless interface to facilitate knowledge discovery from game data. We demonstrate the use of this methodology with data from two multiplayer team-based games: BoomTown, a game developed by Gallup, and DotA 2. The results of this work show the effectiveness of this method in modeling, and developing human-interpretable models of team and individual behavior.
Social biases based on gender, race, etc. have been shown to pollute machine learning (ML) pipeline predominantly via biased training datasets. Crowdsourcing, a popular cost-effective measure to gather labeled training datasets, is not immune to the inherent social biases of crowd workers. To ensure such social biases arent passed onto the curated datasets, its important to know how biased each crowd worker is. In this work, we propose a new method based on counterfactual fairness to quantify the degree of inherent social bias in each crowd worker. This extra information can be leveraged together with individual worker responses to curate a less biased dataset.
Assessing human performance in robotic scenarios such as those seen in telepresence and teleoperation has always been a challenging task. With the recent spike in mixed reality technologies and the subsequent focus by researchers, new pathways have opened in elucidating human perception and maximising overall immersion. Yet with the multitude of different assessment methods in evaluating operator performance in virtual environments within the field of HCI and HRI, inter-study comparability and transferability are limited. In this short paper, we present a brief overview of existing methods in assessing operator performance including subjective and objective approaches while also attempting to capture future technical challenges and frontiers. The ultimate goal is to assist and pinpoint readers towards potentially important directions with the future hope of providing a unified immersion framework for teleoperation and telepresence by standardizing a set of guidelines and evaluation methods.
To better understand the impacts of similarities and dissimilarities in human and AV personalities we conducted an experimental study with 443 individuals. Generally, similarities in human and AV personalities led to a higher perception of AV safety only when both were high in specific personality traits. Dissimilarities in human and AV personalities also yielded a higher perception of AV safety, but only when the AV was higher than the human in a particular personality trait.
225 - Luis Valente 2016
This paper proposes the concept of live-action virtual reality games as a new genre of digital games based on an innovative combination of live-action, mixed-reality, context-awareness, and interaction paradigms that comprise tangible objects, context-aware input devices, and embedded/embodied interactions. Live-action virtual reality games are live-action games because a player physically acts out (using his/her real body and senses) his/her avatar (his/her virtual representation) in the game stage, which is the mixed-reality environment where the game happens. The game stage is a kind of augmented virtuality; a mixed-reality where the virtual world is augmented with real-world information. In live-action virtual reality games, players wear HMD devices and see a virtual world that is constructed using the physical world architecture as the basic geometry and context information. Physical objects that reside in the physical world are also mapped to virtual elements. Live-action virtual reality games keeps the virtual and real-worlds superimposed, requiring players to physically move in the environment and to use different interaction paradigms (such as tangible and embodied interaction) to complete game activities. This setup enables the players to touch physical architectural elements (such as walls) and other objects, feeling the game stage. Players have free movement and may interact with physical objects placed in the game stage, implicitly and explicitly. Live-action virtual reality games differ from similar game concepts because they sense and use contextual information to create unpredictable game experiences, giving rise to emergent gameplay.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا