Do you want to publish a course? Click here

Survival of the fractional Josephson effect in time-reversal-invariant topological superconductors

97   0   0.0 ( 0 )
 Added by Christina Knapp
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-reversal-invariant topological superconductor (TRITOPS) wires host Majorana Kramers pairs that have been predicted to mediate a fractional Josephson effect with $4pi$ periodicity in the superconducting phase difference. We explore the TRITOPS fractional Josephson effect in the presence of time-dependent `local mixing perturbations that instantaneously preserve time-reversal symmetry. Specifically, we show that just as such couplings render braiding of Majorana Kramers pairs non-universal, the Josephson current becomes either aperiodic or $2pi$-periodic (depending on conditions that we quantify) unless the phase difference is swept sufficiently quickly. We further analyze topological superconductors with $mathcal{T}^2 = +1$ time-reversal symmetry and reveal a rich interplay between interactions and local mixing that can be experimentally probed in nanowire arrays.



rate research

Read More

We propose a minimal lattice model for two-dimensional class DIII superconductors with $C_2$-protected higher-order topology. While this class of superconductors cannot be topologically characterized by symmetry eigenvalues at high symmetry momenta, we propose a simple Wannier-orbital-based real-space diagnosis to unambiguously capture the corresponding higher-order topology. We further identify and characterize a variety of conventional topological phases in our minimal model, including a weak topological superconductor and a nodal topological superconductor with chiral-symmetry protection. The disorder effect is also systematically studied to demonstrate the robustness of higher-order bulk-boundary correspondence. Our theory lays the groundwork for predicting and diagnosing $C_2$-protected higher-order topology in class DIII superconductors.
We establish quasi-two-dimensional thin films of iron-based superconductors (FeSCs) as a new high-temperature platform for hosting intrinsic time-reversal-invariant helical topological superconductivity (TSC). Based on the combination of Dirac surface state and bulk extended $s$-wave pairing, our theory should be directly applicable to a large class of experimentally established FeSCs, opening a new TSC paradigm. In particular, an applied electric field serves as a topological switch for helical Majorana edge modes in FeSC thin films, allowing for an experimentally feasible design of gate-controlled helical Majorana circuits. Applying an in-plane magnetic field drives the helical TSC phase into a higher-order TSC carrying corner-localized Majorana zero modes. Our proposal should enable the experimental realization of helical Majorana fermions.
Topological Josephson junctions (JJs), which contain Majorana bound states, are expected to exhibit 4$pi$-periodic current-phase relation, thereby resulting in doubled Shapiro steps under microwave irradiation. We performed numerical calculations of dynamical properties of topological JJs using a modified resistively and capacitively shunted junction model and extensively investigated the progressive evolution of Shapiro steps as a function of the junction parameters and microwave power and frequency. Our calculation results indicate that the suppression of odd-integer Shapiro steps, i.e., evidence of the fractional ac Josephson effect, is enhanced significantly by the increase in the junction capacitance and IcRn product as well as the decrease in the microwave frequency even for the same portion of the 4$pi$-periodic supercurrent. Our study provides the optimal conditions for observing the fractional ac Josephson effect; furthermore, our new model can be used to precisely quantify the topological supercurrent from the experimental data of topological JJs.
175 - Y. Kopelevich , R. R. da Silva , 2012
The ordinary magnetoresistance (MR) of doped semiconductors is positive and quadratic in a low magnetic field, B, as it should be in the framework of the Boltzmann kinetic theory or in the conventional hopping regime. We observe an unusual highly-anisotropic in-plane MR in graphite, which is neither quadratic nor always positive. In a certain current direction MR is negative and linear in B in fields below a few tens of mT with a crossover to a positive MR at higher fields, while in a perpendicular current direction we observe a giant super-linear and positive MR. These extraordinary MRs are respectively explained by a hopping magneto-conductance via non-zero angular momentum orbitals, and by the magneto-conductance of inhomogeneous media. The linear orbital NMR is a unique signature of the broken time-reversal symmetry (TRS) in graphite. While some local paramagnetic centers could be responsible for the broken TRS, the observed large diamagnetism suggests a more intriguing mechanism of this breaking, involving superconducting clusters with unconventional (chiral) order parameters and spontaneously generated normal-state current loops in graphite.
We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term $t$, a chemical potential $mu$, an extended $s$-wave pairing $Delta$ and spin-orbit coupling $lambda$. We show that for $|Delta|=|lambda|$, $mu=t=0$, the model can be solved exactly defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we correct some statements related with the so called time-reversal anomaly. Addition of a small hopping term for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains with numerical results %for a small chain obtaining good agreement.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا