Do you want to publish a course? Click here

Extraordinary magnetoresistance in graphite: experimental evidence for the time-reversal symmetry breaking

170   0   0.0 ( 0 )
 Added by A. S. Alexandrov
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ordinary magnetoresistance (MR) of doped semiconductors is positive and quadratic in a low magnetic field, B, as it should be in the framework of the Boltzmann kinetic theory or in the conventional hopping regime. We observe an unusual highly-anisotropic in-plane MR in graphite, which is neither quadratic nor always positive. In a certain current direction MR is negative and linear in B in fields below a few tens of mT with a crossover to a positive MR at higher fields, while in a perpendicular current direction we observe a giant super-linear and positive MR. These extraordinary MRs are respectively explained by a hopping magneto-conductance via non-zero angular momentum orbitals, and by the magneto-conductance of inhomogeneous media. The linear orbital NMR is a unique signature of the broken time-reversal symmetry (TRS) in graphite. While some local paramagnetic centers could be responsible for the broken TRS, the observed large diamagnetism suggests a more intriguing mechanism of this breaking, involving superconducting clusters with unconventional (chiral) order parameters and spontaneously generated normal-state current loops in graphite.



rate research

Read More

101 - G.M.Luke , Y.Fudamoto , K.M.Kojima 1998
We report muon spin relaxation measurements on the superconductor Sr2RuO4 that reveal the spontaneous appearance of an internal magnetic field below the transition temperature: the appearance of such a field indicates that the superconducting state in this material is characterized by the breaking of time-reversal symmetry. These results, combined with other symmetry considerations, suggest that superconductivity in Sr2RuO4 is of p-wave (odd-parity) type, analogous to superfluid 3He.
Zero and longitudinal field muon spin rotation (muSR) experiments were performed on the superconductors PrPt4Ge12 and LaPt4Ge12. In PrPt4Ge12 below Tc a spontaneous magnetization with a temperature variation resembling that of the superfluid density appears. This observation implies time-reversal symmetry (TRS) breaking in PrPt4Ge12 below Tc = 7.9 K. This remarkably high Tc for an anomalous superconductor and the weak and gradual change of Tc and of the related specific heat anomaly upon La substitution in La_(1-x)Pr_xPt_4Ge_(12) suggests that the TRS breaking is due to orbital degrees of freedom of the Cooper pairs.
89 - P. Neha , P.K.Biswas , Tanmoy Das 2018
The single helical Fermi surface on the surface state of three-dimensional topological insulator Bi2Se3 is constrained by the time-reversal invariant bulk topology to possess a spin-singlet superconducting pairing symmetry. In fact, the Cu-doped, and pressure-tuned superconducting Bi2Se3 show no evidence of the time reversal symmetry breaking. We report on the detection of the time reversal symmetry (TRS) breaking in the topological superconductor Sr0.1Bi2Se3 , probed by zero-field (ZF) {mu}SR measurements. The TRS breaking provides strong evidence for the existence of spin-triplet pairing state. The temperature dependent super-fluid density deduced from transverse-field (TF) {mu}SR measurement yields nodeless superconductivity with low superconducting carrier density and penetration depth {lambda} = 1622(134) nm. From the microscopic theory of unconventional pairing, we find that such a fully gapped spin triplet pairing channel is promoted by the complex interplay between the structural hexagonal warping and higher order Dresselhaus spin-orbit coupling terms. Based on Ginzburg-Landau analysis, we delineate the mixing of singlet to triplet pairing symmetry as the chemical potential is tuned far above from the Dirac cone. Our observation of such spontaneous TRS breaking chiral superconductivity on a helical surface state, protected by the TRS invariant bulk topology, can open new avenues for interesting research and applications.
We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onset of superconductivity. This finding suggests that the superconducting state of SrPtAs breaks time-reversal symmetry. The superfluid density as determined by transverse field muSR is nearly flat approaching T = 0 K proving the absence of extended nodes in the gap function. By symmetry, several superconducting states supporting time-reversal symmetry breaking in SrPtAs are allowed. Out of these, a dominantly d + id (chiral d-wave) order parameter is most consistent with our experimental data.
Spontaneous time-reversal symmetry (TRS) breaking plays an important role in studying strongly correlated unconventional superconductors. When the superconducting gap functions with different pairing symmetries compete, an Ising ($Z_2$) type symmetry breaking occurs due to the locking of the relative phase $Deltatheta_{12}$ via a second order Josephson coupling. The phase locking can take place even in the normal state in the phase fluctuation regime before the onset of superconductivity. If $Deltatheta_{12}=pmfrac{pi}{2}$, then TRS is broken, otherwise, if $Deltatheta_{12}=0$, or, $pi$, rotational symmetry is broken leading to a nematic state. In both cases, the order parameters possess a 4-fermion structure beyond the scope of mean-field theory. We employ an effective two-component $XY$-model assisted by a renormalization group analysis to address this problem. In addition, a quartetting, or, charge-``4e, superconductivity can also occur above $T_c$. Monte-Carlo simulations are performed and the results are in a good agreement with the renormalization group analysis. Our results provide useful guidance for studying novel symmetry breakings in strongly correlated superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا