No Arabic abstract
The outpainting results produced by existing approaches are often too random to meet users requirement. In this work, we take the image outpainting one step forward by allowing users to harvest personal custom outpainting results using sketches as the guidance. To this end, we propose an encoder-decoder based network to conduct sketch-guided outpainting, where two alignment modules are adopted to impose the generated content to be realistic and consistent with the provided sketches. First, we apply a holistic alignment module to make the synthesized part be similar to the real one from the global view. Second, we reversely produce the sketches from the synthesized part and encourage them be consistent with the ground-truth ones using a sketch alignment module. In this way, the learned generator will be imposed to pay more attention to fine details and be sensitive to the guiding sketches. To our knowledge, this work is the first attempt to explore the challenging yet meaningful conditional scenery image outpainting. We conduct extensive experiments on two collected benchmarks to qualitatively and quantitatively validate the effectiveness of our approach compared with the other state-of-the-art generative models.
We aim to tackle the challenging yet practical scenery image outpainting task in this work. Recently, generative adversarial learning has significantly advanced the image outpainting by producing semantic consistent content for the given image. However, the existing methods always suffer from the blurry texture and the artifacts of the generative part, making the overall outpainting results lack authenticity. To overcome the weakness, this work investigates a principle way to synthesize texture-rich results by borrowing pixels from its neighbors (ie, reference images), named textbf{Re}ference-textbf{G}uided textbf{O}utpainting (ReGO). Particularly, the ReGO designs an Adaptive Content Selection (ACS) module to transfer the pixel of reference images for texture compensating of the target one. To prevent the style of the generated part from being affected by the reference images, a style ranking loss is further proposed to augment the ReGO to synthesize style-consistent results. Extensive experiments on two popular benchmarks, NS6K~cite{yangzx} and NS8K~cite{wang}, well demonstrate the effectiveness of our ReGO.
Image outpainting seeks for a semantically consistent extension of the input image beyond its available content. Compared to inpainting -- filling in missing pixels in a way coherent with the neighboring pixels -- outpainting can be achieved in more diverse ways since the problem is less constrained by the surrounding pixels. Existing image outpainting methods pose the problem as a conditional image-to-image translation task, often generating repetitive structures and textures by replicating the content available in the input image. In this work, we formulate the problem from the perspective of inverting generative adversarial networks. Our generator renders micro-patches conditioned on their joint latent code as well as their individual positions in the image. To outpaint an image, we seek for multiple latent codes not only recovering available patches but also synthesizing diverse outpainting by patch-based generation. This leads to richer structure and content in the outpainted regions. Furthermore, our formulation allows for outpainting conditioned on the categorical input, thereby enabling flexible user controls. Extensive experimental results demonstrate the proposed method performs favorably against existing in- and outpainting methods, featuring higher visual quality and diversity.
We propose an interactive GAN-based sketch-to-image translation method that helps novice users create images of simple objects. As the user starts to draw a sketch of a desired object type, the network interactively recommends plausible completions, and shows a corresponding synthesized image to the user. This enables a feedback loop, where the user can edit their sketch based on the networks recommendations, visualizing both the completed shape and final rendered image while they draw. In order to use a single trained model across a wide array of object classes, we introduce a gating-based approach for class conditioning, which allows us to generate distinct classes without feature mixing, from a single generator network. Video available at our website: https://arnabgho.github.io/iSketchNFill/.
Recovering badly damaged face images is a useful yet challenging task, especially in extreme cases where the masked or damaged region is very large. One of the major challenges is the ability of the system to generalize on faces outside the training dataset. We propose to tackle this extreme inpainting task with a conditional Generative Adversarial Network (GAN) that utilizes structural information, such as edges, as a prior condition. Edge information can be obtained from the partially masked image and a structurally similar image or a hand drawing. In our proposed conditional GAN, we pass the conditional input in every layer of the encoder while maintaining consistency in the distributions between the learned weights and the incoming conditional input. We demonstrate the effectiveness of our method with badly damaged face examples.
Imagining a colored realistic image from an arbitrarily drawn sketch is one of the human capabilities that we eager machines to mimic. Unlike previous methods that either requires the sketch-image pairs or utilize low-quantity detected edges as sketches, we study the exemplar-based sketch-to-image (s2i) synthesis task in a self-supervised learning manner, eliminating the necessity of the paired sketch data. To this end, we first propose an unsupervised method to efficiently synthesize line-sketches for general RGB-only datasets. With the synthetic paired-data, we then present a self-supervised Auto-Encoder (AE) to decouple the content/style features from sketches and RGB-images, and synthesize images that are both content-faithful to the sketches and style-consistent to the RGB-images. While prior works employ either the cycle-consistence loss or dedicated attentional modules to enforce the content/style fidelity, we show AEs superior performance with pure self-supervisions. To further improve the synthesis quality in high resolution, we also leverage an adversarial network to refine the details of synthetic images. Extensive experiments on 1024*1024 resolution demonstrate a new state-of-art-art performance of the proposed model on CelebA-HQ and Wiki-Art datasets. Moreover, with the proposed sketch generator, the model shows a promising performance on style mixing and style transfer, which require synthesized images to be both style-consistent and semantically meaningful. Our code is available on https://github.com/odegeasslbc/Self-Supervised-Sketch-to-Image-Synthesis-PyTorch, and please visit https://create.playform.io/my-projects?mode=sketch for an online demo of our model.