Do you want to publish a course? Click here

Extreme Face Inpainting with Sketch-Guided Conditional GAN

105   0   0.0 ( 0 )
 Added by Nilesh Pandey
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recovering badly damaged face images is a useful yet challenging task, especially in extreme cases where the masked or damaged region is very large. One of the major challenges is the ability of the system to generalize on faces outside the training dataset. We propose to tackle this extreme inpainting task with a conditional Generative Adversarial Network (GAN) that utilizes structural information, such as edges, as a prior condition. Edge information can be obtained from the partially masked image and a structurally similar image or a hand drawing. In our proposed conditional GAN, we pass the conditional input in every layer of the encoder while maintaining consistency in the distributions between the learned weights and the incoming conditional input. We demonstrate the effectiveness of our method with badly damaged face examples.



rate research

Read More

We are interested in attribute-guided face generation: given a low-res face input image, an attribute vector that can be extracted from a high-res image (attribute image), our new method generates a high-res face image for the low-res input that satisfies the given attributes. To address this problem, we condition the CycleGAN and propose conditional CycleGAN, which is designed to 1) handle unpaired training data because the training low/high-res and high-res attribute images may not necessarily align with each other, and to 2) allow easy control of the appearance of the generated face via the input attributes. We demonstrate impressive results on the attribute-guided conditional CycleGAN, which can synthesize realistic face images with appearance easily controlled by user-supplied attributes (e.g., gender, makeup, hair color, eyeglasses). Using the attribute image as identity to produce the corresponding conditional vector and by incorporating a face verification network, the attribute-guided network becomes the identity-guided conditional CycleGAN which produces impressive and interesting results on identity transfer. We demonstrate three applications on identity-guided conditional CycleGAN: identity-preserving face superresolution, face swapping, and frontal face generation, which consistently show the advantage of our new method.
Can a user create a deep generative model by sketching a single example? Traditionally, creating a GAN model has required the collection of a large-scale dataset of exemplars and specialized knowledge in deep learning. In contrast, sketching is possibly the most universally accessible way to convey a visual concept. In this work, we present a method, GAN Sketching, for rewriting GANs with one or more sketches, to make GANs training easier for novice users. In particular, we change the weights of an original GAN model according to user sketches. We encourage the models output to match the user sketches through a cross-domain adversarial loss. Furthermore, we explore different regularization methods to preserve the original models diversity and image quality. Experiments have shown that our method can mold GANs to match shapes and poses specified by sketches while maintaining realism and diversity. Finally, we demonstrate a few applications of the resulting GAN, including latent space interpolation and image editing.
Facial image inpainting, with high-fidelity preservation for image realism, is a very challenging task. This is due to the subtle texture in key facial features (component) that are not easily transferable. Many image inpainting techniques have been proposed with outstanding capabilities and high quantitative performances recorded. However, with facial inpainting, the features are more conspicuous and the visual quality of the blended inpainted regions are more important qualitatively. Based on these facts, we design a foreground-guided facial inpainting framework that can extract and generate facial features using convolutional neural network layers. It introduces the use of foreground segmentation masks to preserve the fidelity. Specifically, we propose a new loss function with semantic capability reasoning of facial expressions, natural and unnatural features (make-up). We conduct our experiments using the CelebA-HQ dataset, segmentation masks from CelebAMask-HQ (for foreground guidance) and Quick Draw Mask (for missing regions). Our proposed method achieved comparable quantitative results when compare to the state of the art but qualitatively, it demonstrated high-fidelity preservation of facial components.
We consider the problem of filling in missing spatio-temporal regions of a video. We provide a novel flow-based solution by introducing a generative model of images in relation to the scene (without missing regions) and mappings from the scene to images. We use the model to jointly infer the scene template, a 2D representation of the scene, and the mappings. This ensures consistency of the frame-to-frame flows generated to the underlying scene, reducing geometric distortions in flow based inpainting. The template is mapped to the missing regions in the video by a new L2-L1 interpolation scheme, creating crisp inpaintings and reducing common blur and distortion artifacts. We show on two benchmark datasets that our approach out-performs state-of-the-art quantitatively and in user studies.
The outpainting results produced by existing approaches are often too random to meet users requirement. In this work, we take the image outpainting one step forward by allowing users to harvest personal custom outpainting results using sketches as the guidance. To this end, we propose an encoder-decoder based network to conduct sketch-guided outpainting, where two alignment modules are adopted to impose the generated content to be realistic and consistent with the provided sketches. First, we apply a holistic alignment module to make the synthesized part be similar to the real one from the global view. Second, we reversely produce the sketches from the synthesized part and encourage them be consistent with the ground-truth ones using a sketch alignment module. In this way, the learned generator will be imposed to pay more attention to fine details and be sensitive to the guiding sketches. To our knowledge, this work is the first attempt to explore the challenging yet meaningful conditional scenery image outpainting. We conduct extensive experiments on two collected benchmarks to qualitatively and quantitatively validate the effectiveness of our approach compared with the other state-of-the-art generative models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا