In this work we propose a machine learning model for depression detection from transcribed clinical interviews. Depression is a mental disorder that impacts not only the subjects mood but also the use of language. To this end we use a Hierarchical Attention Network to classify interviews of depressed subjects. We augment the attention layer of our model with a conditioning mechanism on linguistic features, extracted from affective lexica. Our analysis shows that individuals diagnosed with depression use affective language to a greater extent than not-depressed. Our experiments show that external affective information improves the performance of the proposed architecture in the General Psychotherapy Corpus and the DAIC-WoZ 2017 depression datasets, achieving state-of-the-art 71.6 and 68.6 F1 scores respectively.
Diagnostic or procedural coding of clinical notes aims to derive a coded summary of disease-related information about patients. Such coding is usually done manually in hospitals but could potentially be automated to improve the efficiency and accuracy of medical coding. Recent studies on deep learning for automated medical coding achieved promising performances. However, the explainability of these models is usually poor, preventing them to be used confidently in supporting clinical practice. Another limitation is that these models mostly assume independence among labels, ignoring the complex correlation among medical codes which can potentially be exploited to improve the performance. We propose a Hierarchical Label-wise Attention Network (HLAN), which aimed to interpret the model by quantifying importance (as attention weights) of words and sentences related to each of the labels. Secondly, we propose to enhance the major deep learning models with a label embedding (LE) initialisation approach, which learns a dense, continuous vector representation and then injects the representation into the final layers and the label-wise attention layers in the models. We evaluated the methods using three settings on the MIMIC-III discharge summaries: full codes, top-50 codes, and the UK NHS COVID-19 shielding codes. Experiments were conducted to compare HLAN and LE initialisation to the state-of-the-art neural network based methods. HLAN achieved the best Micro-level AUC and $F_1$ on the top-50 code prediction and comparable results on the NHS COVID-19 shielding code prediction to other models. By highlighting the most salient words and sentences for each label, HLAN showed more meaningful and comprehensive model interpretation compared to its downgraded baselines and the CNN-based models. LE initialisation consistently boosted most deep learning models for automated medical coding.
While recurrent models have been effective in NLP tasks, their performance on context-free languages (CFLs) has been found to be quite weak. Given that CFLs are believed to capture important phenomena such as hierarchical structure in natural languages, this discrepancy in performance calls for an explanation. We study the performance of recurrent models on Dyck-n languages, a particularly important and well-studied class of CFLs. We find that while recurrent models generalize nearly perfectly if the lengths of the training and test strings are from the same range, they perform poorly if the test strings are longer. At the same time, we observe that recurrent models are expressive enough to recognize Dyck words of arbitrary lengths in finite precision if their depths are bounded. Hence, we evaluate our models on samples generated from Dyck languages with bounded depth and find that they are indeed able to generalize to much higher lengths. Since natural language datasets have nested dependencies of bounded depth, this may help explain why they perform well in modeling hierarchical dependencies in natural language data despite prior works indicating poor generalization performance on Dyck languages. We perform probing studies to support our results and provide comparisons with Transformers.
Bipolar disorder, a severe chronic mental illness characterized by pathological mood swings from depression to mania, requires ongoing symptom severity tracking to both guide and measure treatments that are critical for maintaining long-term health. Mental health professionals assess symptom severity through semi-structured clinical interviews. During these interviews, they observe their patients spoken behaviors, including both what the patients say and how they say it. In this work, we move beyond acoustic and lexical information, investigating how higher-level interactive patterns also change during mood episodes. We then perform a secondary analysis, asking if these interactive patterns, measured through dialogue features, can be used in conjunction with acoustic features to automatically recognize mood episodes. Our results show that it is beneficial to consider dialogue features when analyzing and building automated systems for predicting and monitoring mood.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
A key property of linguistic conventions is that they hold over an entire community of speakers, allowing us to communicate efficiently even with people we have never met before. At the same time, much of our language use is partner-specific: we know that words may be understood differently by different people based on our shared history. This poses a challenge for accounts of convention formation. Exactly how do agents make the inferential leap to community-wide expectations while maintaining partner-specific knowledge? We propose a hierarchical Bayesian model to explain how speakers and listeners solve this inductive problem. To evaluate our models predictions, we conducted an experiment where participants played an extended natural-language communication game with different partners in a small community. We examine several measures of generalization and find key signatures of both partner-specificity and community convergence that distinguish our model from alternatives. These results suggest that partner-specificity is not only compatible with the formation of community-wide conventions, but may facilitate it when coupled with a powerful inductive mechanism.