Do you want to publish a course? Click here

On the Practical Ability of Recurrent Neural Networks to Recognize Hierarchical Languages

91   0   0.0 ( 0 )
 Added by Satwik Bhattamishra
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

While recurrent models have been effective in NLP tasks, their performance on context-free languages (CFLs) has been found to be quite weak. Given that CFLs are believed to capture important phenomena such as hierarchical structure in natural languages, this discrepancy in performance calls for an explanation. We study the performance of recurrent models on Dyck-n languages, a particularly important and well-studied class of CFLs. We find that while recurrent models generalize nearly perfectly if the lengths of the training and test strings are from the same range, they perform poorly if the test strings are longer. At the same time, we observe that recurrent models are expressive enough to recognize Dyck words of arbitrary lengths in finite precision if their depths are bounded. Hence, we evaluate our models on samples generated from Dyck languages with bounded depth and find that they are indeed able to generalize to much higher lengths. Since natural language datasets have nested dependencies of bounded depth, this may help explain why they perform well in modeling hierarchical dependencies in natural language data despite prior works indicating poor generalization performance on Dyck languages. We perform probing studies to support our results and provide comparisons with Transformers.



rate research

Read More

Transformers have supplanted recurrent models in a large number of NLP tasks. However, the differences in their abilities to model different syntactic properties remain largely unknown. Past works suggest that LSTMs generalize very well on regular languages and have close connections with counter languages. In this work, we systematically study the ability of Transformers to model such languages as well as the role of its individual components in doing so. We first provide a construction of Transformers for a subclass of counter languages, including well-studied languages such as n-ary Boolean Expressions, Dyck-1, and its generalizations. In experiments, we find that Transformers do well on this subclass, and their learned mechanism strongly correlates with our construction. Perhaps surprisingly, in contrast to LSTMs, Transformers do well only on a subset of regular languages with degrading performance as we make languages more complex according to a well-known measure of complexity. Our analysis also provides insights on the role of self-attention mechanism in modeling certain behaviors and the influence of positional encoding schemes on the learning and generalization abilities of the model.
In this paper we study different types of Recurrent Neural Networks (RNN) for sequence labeling tasks. We propose two new variants of RNNs integrating improvements for sequence labeling, and we compare them to the more traditional Elman and Jordan RNNs. We compare all models, either traditional or new, on four distinct tasks of sequence labeling: two on Spoken Language Understanding (ATIS and MEDIA); and two of POS tagging for the French Treebank (FTB) and the Penn Treebank (PTB) corpora. The results show that our new variants of RNNs are always more effective than the others.
107 - Zhaoxin Luo , Michael Zhu 2021
Hierarchical structures exist in both linguistics and Natural Language Processing (NLP) tasks. How to design RNNs to learn hierarchical representations of natural languages remains a long-standing challenge. In this paper, we define two different types of boundaries referred to as static and dynamic boundaries, respectively, and then use them to construct a multi-layer hierarchical structure for document classification tasks. In particular, we focus on a three-layer hierarchical structure with static word- and sentence- layers and a dynamic phrase-layer. LSTM cells and two boundary detectors are used to implement the proposed structure, and the resulting network is called the {em Recurrent Neural Network with Mixed Hierarchical Structures} (MHS-RNN). We further add three layers of attention mechanisms to the MHS-RNN model. Incorporating attention mechanisms allows our model to use more important content to construct document representation and enhance its performance on document classification tasks. Experiments on five different datasets show that the proposed architecture outperforms previous methods on all the five tasks.
Recurrent neural networks have proved to be an effective method for statistical language modeling. However, in practice their memory and run-time complexity are usually too large to be implemented in real-time offline mobile applications. In this paper we consider several compression techniques for recurrent neural networks including Long-Short Term Memory models. We make particular attention to the high-dimensional output problem caused by the very large vocabulary size. We focus on effective compression methods in the context of their exploitation on devices: pruning, quantization, and matrix decomposition approaches (low-rank factorization and tensor train decomposition, in particular). For each model we investigate the trade-off between its size, suitability for fast inference and perplexity. We propose a general pipeline for applying the most suitable methods to compress recurrent neural networks for language modeling. It has been shown in the experimental study with the Penn Treebank (PTB) dataset that the most efficient results in terms of speed and compression-perplexity balance are obtained by matrix decomposition techniques.
Despite their impressive performance in NLP, self-attention networks were recently proved to be limited for processing formal languages with hierarchical structure, such as $mathsf{Dyck}_k$, the language consisting of well-nested parentheses of $k$ types. This suggested that natural language can be approximated well with models that are too weak for formal languages, or that the role of hierarchy and recursion in natural language might be limited. We qualify this implication by proving that self-attention networks can process $mathsf{Dyck}_{k, D}$, the subset of $mathsf{Dyck}_{k}$ with depth bounded by $D$, which arguably better captures the bounded hierarchical structure of natural language. Specifically, we construct a hard-attention network with $D+1$ layers and $O(log k)$ memory size (per token per layer) that recognizes $mathsf{Dyck}_{k, D}$, and a soft-attention network with two layers and $O(log k)$ memory size that generates $mathsf{Dyck}_{k, D}$. Experiments show that self-attention networks trained on $mathsf{Dyck}_{k, D}$ generalize to longer inputs with near-perfect accuracy, and also verify the theoretical memory advantage of self-attention networks over recurrent networks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا