Do you want to publish a course? Click here

Ramsey interferometry through coherent $X^2Sigma_g^+ - A^2Pi_u - B^2Sigma_u^+$ coupling and population transfer in N$^+_2$ air laser

227   0   0.0 ( 0 )
 Added by Wen-Te Liao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The laser-like coherent emission at 391nm from N$_2$ gas irradiated by strong 800nm pump laser and weak 400nm seed laser is theoretically investigated. Recent experimental observations are well simulated, including temporal profile, optical gain and periodic modulation of the 391nm signal from N$_2^+$. Our calculation sheds light on the long standing controversy on whether population inversion is indispensable for the optical gain. We demonstrate the Ramsey interference fringes of the emission intensity at 391nm formed by additionally injecting another 800nm pump or 400nm seed, which are well explained by the coherent modulation of transition dipole moment and population between the $A^2Pi_u( u=2)$-$X^2Sigma_g^+$ states as well as the $B^2Sigma_u^+ ( u=0)$-$X^2Sigma_g^+$ states. This study provides versatile possibilities for the coherent control of $text{N}_2^+$ air laser.



rate research

Read More

The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes and chemical reactions. It is thus a long-standing scientific dream to measure the dynamics of two bound correlated electrons in the quantum regime. Quantum wave packets were previously observed for single-active electrons on their natural attosecond timescales. However, at least two active electrons and a nucleus are required to address the quantum three-body problem. This situation is realized in the helium atom, but direct time-resolved observation of two-electron wave-packet motion remained an unaccomplished challenge. Here, we measure a 1.2-femtosecond quantum beating among low-lying doubly-excited states in helium to evidence a correlated two-electron wave packet. Our experimental method combines attosecond transient-absorption spectroscopy at unprecedented high spectral resolution (20 meV near 60 eV) with an intensity-tuneable visible laser field to couple the quantum states from the perturbative to the strong-coupling regime. This multi-dimensional transient-coupling scheme reveals an inversion of the characteristic Fano line shapes for a range of doubly-excited states. Employing Fano-type autoionization as a natural quantum interferometer, a dynamical phase shift by laser coupling to the N=2 continuum is postulated and experimentally quantified. This phase maps a transition from effectively single-active-electron to two-electron dynamics as the electron-electron interaction increases in lower-lying quantum states. In the future, such experiments will provide benchmark data for testing dynamical few-body quantum theory. They will boost our understanding of chemically and biologically important metastable electronic transition states and their dynamics on attosecond time scales.
Light-matter interaction, and the understanding of the fundamental physics behind, is the scenario of emerging quantum technologies. Solid state devices allow the exploration of new regimes where ultrastrong coupling (USC) strengths are comparable to subsystem energies, and new exotic phenomena like quantum phase transitions and ground-state entanglement occur. While experiments so far provided only spectroscopic evidence of USC, we propose a new dynamical protocol for detecting virtual photon pairs in the dressed eigenstates. This is the fingerprint of the violated conservation of the number of excitations, which heralds the symmetry broken by USC. We show that in flux-based superconducting architectures this photon production channel can be coherenly amplified by Stimulated Raman Adiabatic Passage (STIRAP). This provides a unique tool for an unambiguous dynamical detection of USC in present day hardware. Implementing this protocol would provide a benchmark for control of the dynamics of USC architectures, in view of applications to quantum information and microwave quantum photonics.
We present an experimental and theoretical energy- and angle-resolved study on the photoionization dynamics of non-resonant one-color two-photon single valence ionization of neutral N$_2$ molecules. Using 9.3 eV photons produced via high harmonic generation and a 3-D momentum imaging spectrometer, we detect the photoelectrons and ions produced from one-color two-photon ionization in coincidence. Photoionization of N$_2$ populates the X $^2Sigma^+_g$, A $^2Pi_u$, and B $^2Sigma^+_u$ ionic states of N$_2^+$, where the photoelectron angular distributions associated with the X $^2Sigma^+_g$ and A $^2Pi_u$ states both vary with changes in photoelectron kinetic energy of only a few hundred meV. We attribute the rapid evolution in the photoelectron angular distributions to the excitation and decay of dipole-forbidden autoionizing resonances that belong to series of different symmetries, all of which are members of the Hopfield series, and compete with the direct two-photon single ionization.
The simplest molecules in nature, molecular hydrogen ions in the form of H2+ and HD+, provide an important benchmark system for tests of quantum electrodynamics in complex forms of matter. Here, we report on such a test based on a frequency measurement of a vibrational overtone transition in HD+ by laser spectroscopy. We find that the theoretical and experimental frequencies are equal to within 0.6(1.1) parts per billion, which represents the most stringent test of molecular theory so far. Our measurement not only confirms the validity of high-order quantum electrodynamics in molecules, but also enables the long predicted determination of the proton-to-electron mass ratio from a molecular system, as well as improved constraints on hypothetical fifth forces and compactified higher dimensions at the molecular scale. With the perspective of comparisons between theory and experiment at the 0.01 part-per-billion level, our work demonstrates the potential of molecular hydrogen ions as a probe of fundamental physical constants and laws.
113 - N. Mielec , M. Altorio , R. Sapam 2018
The uniformity of the intensity and phase of laser beams is crucial to high-performance atom interferometers. Inhomogeneities in the laser intensity profile cause contrast reductions and systematic effects in interferometers operated with atom sources at micro-Kelvin temperatures, and detrimental diffraction phase shifts in interferometers using large momentum transfer beam splitters. We report on the implementation of a so-called top-hat laser beam in a long-interrogation-time cold-atom interferometer to overcome the issue of the inhomogeneous laser intensity encountered when using Gaussian laser beams. We characterize the intensity and relative phase profiles of the top-hat beam and demonstrate its gain in atom-optics efficiency over a Gaussian beam, in agreement with numerical simulations. We discuss the application of top-hat beams to improve the performance of different architectures of atom interferometers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا