Do you want to publish a course? Click here

Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+

57   0   0.0 ( 0 )
 Added by J. C. J. Koelemeij
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The simplest molecules in nature, molecular hydrogen ions in the form of H2+ and HD+, provide an important benchmark system for tests of quantum electrodynamics in complex forms of matter. Here, we report on such a test based on a frequency measurement of a vibrational overtone transition in HD+ by laser spectroscopy. We find that the theoretical and experimental frequencies are equal to within 0.6(1.1) parts per billion, which represents the most stringent test of molecular theory so far. Our measurement not only confirms the validity of high-order quantum electrodynamics in molecules, but also enables the long predicted determination of the proton-to-electron mass ratio from a molecular system, as well as improved constraints on hypothetical fifth forces and compactified higher dimensions at the molecular scale. With the perspective of comparisons between theory and experiment at the 0.01 part-per-billion level, our work demonstrates the potential of molecular hydrogen ions as a probe of fundamental physical constants and laws.



rate research

Read More

67 - A Cournol 2019
We present a brief review of our progress towards measuring parity violation in heavy-metal chiral complexes using mid-infrared Ramsey interferometry. We discuss our progress addressing the main challenges, including the development of buffer-gas sources of slow, cold polyatomic molecules, and the frequency-stabilisation of quantum cascade lasers calibrated using primary frequency standards. We report investigations on achiral test species of which promising chiral derivatives have been synthesized.
149 - Beno^it Darquie 2010
Parity violation (PV) effects in chiral molecules have so far never been experimentally observed. To take this challenge up, a consortium of physicists, chemists, theoreticians and spectroscopists has been established and aims at measuring PV energy differences between two enantiomers by using high-resolution laser spectroscopy. In this article, we present our common strategy to reach this goal, the progress accomplished in the diverse areas, and point out directions for future PV observations. The work of Andre Collet on bromochlorofluoromethane enantiomers, their synthesis and their chiral recognition by cryptophanes made feasible the first generation of experiments presented in this paper.
An overview is presented of laser spectroscopy experiments with cold, trapped, highly-charged ions, which will be performed at the HITRAP facility at GSI in Darmstadt (Germany). These high-resolution measurements of ground state hyperfine splittings will be three orders of magnitude more precise than previous measurements. Moreover, from a comparison of measurements of the hyperfine splittings in hydrogen- and lithium-like ions of the same isotope, QED effects at high electromagnetic fields can be determined within a few percent. Several candidate ions suited for these laser spectroscopy studies are presented.
The vibrational quenching cross sections and corresponding low-temperature rate constants for the v = 1 and v = 2 states of CN- colliding with He and Ar atoms have been computed ab initio using new three dimensional potential energy surfaces. Little work has so far been carried out on low-energy vibrationally inelastic collisions for anions with neutral atoms. The cross sections and rates calculated at energies and temperatures relevant for both ion traps and astrochemical modelling, are found by the present calculations to be even smaller than those of the similar C2- /He and C2-/Ar systems which are in turn of the order of those existing for the collisions involving neutral diatom-atom systems. The implications of our finding in the present case rather small computed rate constants are discussed for their possible role in the dynamics of molecular cooling and in the evolution of astrochemical modelling networks.
168 - P. Bonifacio 2013
Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, alpha, and the proton-to-electron mass ratio, mu = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in alpha on cosmological scales which may reach a fractional level of 10 ppm . We are conducting a Large Programme of observations with VLT UVES to explore these variations. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. and Rahmani et al. A stringent bound for Delta(alpha)/Alpha is obtained for the absorber at_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in alpha in this system is +1.3+-2.4_{stat}+-1.0_{sys} ppm if Al II lambda 1670AA and three Fe II transitions are used, and +1.1+-2.6_{stat} ppm in a lightly different analysis with only Fe II transitions used. The expectation at this sky position of the recently-reported dipolar variation of alpha is (3.2--5.4)+-1.7 ppm depending on dipole model. This constraint of Delta(alpha)/alpha at face value is not supporting this expectation but is not inconsistent with it at the 3 sigma level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_{abs}~2.4018 damped Ly alpha system towards HE 0027- 1836 provides Delta(mu)/mu = (-7.6 +- 8.1_{stat} +- 6.3_{sys}) ppm which is also consistent with a null variation. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا