Do you want to publish a course? Click here

Report on Optimal Substructure Techniques for Stellar, Gas and Combined Samples

60   0   0.0 ( 0 )
 Added by Isabelle Joncour
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This document aims at reviewing the different types of clustering algorithms and substructures detection techniques in order to study the spatial and kinematic clustering of stars and detect the gas components in molecular clouds. It is the deliverable: Report on Optimal Substructure Techniques for Stellar, Gas and Combined Samples, for the EU H2020 (COMPET-5-2015 - Space) project (A Gaia and Herschel Study of the Density Distribution and Evolution of Young Massive Star Clusters), Grant Agreement Number: 687528, with abbreviated code name StarFormMapper (SFM) project. The document is organized in the following sections: 1. General Introduction 2. Clustering of Discrete Distributions 3. Clustering of Continuous Distributions 4. Clustering in Astrophysics 5. StarFormMapper 6. Summary and Conclusions

rate research

Read More

We present the Mid-infrared stellar Diameters and Fluxes compilation Catalogue (MDFC) dedicated to long-baseline interferometry at mid-infrared wavelengths (3-13 mum). It gathers data for half a million stars, i.e. nearly all the stars of the Hipparcos-Tycho catalogue whose spectral type is reported in the SIMBAD database. We cross-match 26 databases to provide basic information, binarity elements, angular diameter, magnitude and flux in the near and mid-infrared, as well as flags that allow us to identify the potential calibrators. The catalogue covers the entire sky with 465 857 stars, mainly dwarfs and giants from B to M spectral types closer than 18 kpc. The smallest reported values reach 0.16 muJy in L and 0.1 muJy in N for the flux, and 2 microarcsec for the angular diameter. We build 4 lists of calibrator candidates for the L- and N-bands suitable with the Very Large Telescope Interferometer (VLTI) sub- and main arrays using the MATISSE instrument. We identify 1 621 candidates for L and 44 candidates for N with the Auxiliary Telescopes (ATs), 375 candidates for both bands with the ATs, and 259 candidates for both bands with the Unit Telescopes (UTs). Predominantly cool giants, these sources are small and bright enough to belong to the primary lists of calibrator candidates. In the near future, we plan to measure their angular diameter with 1% accuracy.
It is well known that numerical errors grow exponentially in $N$-body simulations of gravitational bound stellar systems, but it is not well understood how the accuracy parameters of algorithms affect the physical evolution in simulations. By using the hybrid $N$-body code, PeTar, we investigate how escapers and the structure evolution of collisional stellar systems (e.g., star clusters) depend on the accuracy of long-range and short-range interactions. We study a group of simulations of ideal low-mass star clusters in which the accuracy parameters are varied. We find that although the number of escapers is different in individual simulations, its distribution from all simulations can be described by Poisson statistics. The density profile also has a similar feature. By using a self-consistent set-up of the accuracy parameters for long- and short-range interactions, such that orbits are resolved well enough, the physical evolution of the models is identical. But when the short-range accuracy is too low, a nonphysical dynamical evolution can easily occur; this is not the case for long-range interactions. This strengthens the need to include a proper algorithm (e.g. regularization methods) in the realistic modelling of collisional stellar systems. We also demonstrate that energy-conservation is not a good indicator to monitor the quality of the simulations. The energy error of the system is controlled by the hardest binary, and thus, it may not reflect the ensemble error of the global system.
128 - T. Zwitter 2010
The RAdial Velocity Experiment (RAVE) is a spectroscopic survey of the Milky Way. We use the subsample of spectra with spectroscopically determined values of stellar parameters to determine the distances to these stars. The list currently contains 235,064 high quality spectra which show no peculiarities and belong to 210,872 different stars. The numbers will grow as the RAVE survey progresses. The public version of the catalog will be made available through the CDS services along with the ongoing RAVE public data releases. The distances are determined with a method based on the work by Breddels et al.~(2010). Here we assume that the star undergoes a standard stellar evolution and that its spectrum shows no peculiarities. The refinements include: the use of either of the three isochrone sets, a better account of the stellar ages and masses, use of more realistic errors of stellar parameter values, and application to a larger dataset. The derived distances of both dwarfs and giants match within ~21% to the astrometric distances of Hipparcos stars and to the distances of observed members of open and globular clusters. Multiple observations of a fraction of RAVE stars show that repeatability of the derived distances is even better, with half of the objects showing a distance scatter of simlt 11%. RAVE dwarfs are ~300 pc from the Sun, and giants are at distances of 1 to 2 kpc, and up to 10 kpc. This places the RAVE dataset between the more local Geneva-Copenhagen survey and the more distant and fainter SDSS sample. As such it is ideal to address some of the fundamental questions of Galactic structure and evolution in the pre-Gaia era. Individual applications are left to separate papers, here we show that the full 6-dimensional information on position and velocity is accurate enough to discuss the vertical structure and kinematic properties of the thin and thick disks.
Owing to their simplicity and ease of application, seismic scaling relations are widely used to determine the properties of stars exhibiting solar-like oscillations, such as solar twins and red giants. So far, no seismic scaling relations for determining the ages of red giant stars have been developed. Such relations would be desirable for galactic archaeology, which uses stellar ages to map the history of the Milky Way. The ages of red giants must instead be estimated with reference to grids of theoretical stellar models, which can be computationally intensive. Here I present an exhaustive search for scaling age relations involving different combinations of observable quantities. The candidate scaling relations are calibrated and tested using more than 1,000 red giant stars whose ages were obtained via grid-based modeling. I report multiple high-quality scaling relations for red giant branch stars, the best of which are shown to be approximately as accurate as grid-based modeling with typical uncertainties of 15%. Additionally, I present new scaling mass and radius relations for red giants as well.
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) started median-resolution spectroscopic (MRS, R$sim$7500) survey since October 2018. The main scientific goals of MRS, including binary stars, pulsators, and other variable stars are launched with a time-domain spectroscopic survey. However, the systematic errors, including the bias induced from wavelength calibration and the systematic difference between different spectrographs have to be carefully considered during radial velocity measurement. In this work, we provide a technique to correct the systematics in the wavelength calibration based on the relative radial velocity measurements from LAMOST MRS spectra. We show that, for the stars with multi-epoch spectra, the systematic bias which is induced from the exposures of different nights can be well corrected for LAMOST MRS in each spectrograph. And the precision of radial velocity zero-point of multi-epoch time-domain observations reaches below 0.5 km/s . As a by-product, we also give the constant star candidates, which can be the secondary radial-velocity standard star candidates of LAMOST MRS time-domain surveys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا