No Arabic abstract
Owing to their simplicity and ease of application, seismic scaling relations are widely used to determine the properties of stars exhibiting solar-like oscillations, such as solar twins and red giants. So far, no seismic scaling relations for determining the ages of red giant stars have been developed. Such relations would be desirable for galactic archaeology, which uses stellar ages to map the history of the Milky Way. The ages of red giants must instead be estimated with reference to grids of theoretical stellar models, which can be computationally intensive. Here I present an exhaustive search for scaling age relations involving different combinations of observable quantities. The candidate scaling relations are calibrated and tested using more than 1,000 red giant stars whose ages were obtained via grid-based modeling. I report multiple high-quality scaling relations for red giant branch stars, the best of which are shown to be approximately as accurate as grid-based modeling with typical uncertainties of 15%. Additionally, I present new scaling mass and radius relations for red giants as well.
A simple solar scaling relation for estimating the ages of main-sequence stars from asteroseismic and spectroscopic data is developed. New seismic scaling relations for estimating mass and radius are presented as well, including a purely seismic radius scaling relation (i.e., no dependence on temperature). The relations show substantial improvement over the classical scaling relations and perform similarly well to grid-based modeling.
In `A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (PART I), a new technique was introduced for obtaining distances using the TRGB standard candle. Here we describe a useful complement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a 3D view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is presented, encompassing the dwarf spheroidals Andromedas I - III, V, IX-XXVII and XXX along with NGC147, NGC 185, M33 and M31 itself. Of these, the distances to Andromeda XXIV - XXVII and Andromeda XXX have never before been derived using the TRGB. Object distances are determined from high-resolution tip magnitude posterior distributions generated using the Markov Chain Monte Carlo (MCMC) technique and associated sampling of these distributions to take into account uncertainties in foreground extinction and the absolute magnitude of the TRGB as well as photometric errors. The distance PPDs obtained for each object both with, and without the aforementioned prior are made available to the reader in tabular form...
Context. The large quantity of high-quality asteroseismic data that obtained from space-based photometric missions and the accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of stellar models, when applied as diagnostics of the model properties. Aims. Based on models of red-giant stars that have been independently calculated using different stellar evolution codes, we investigate the extent to which the differences in the model calculation affect the model oscillation frequencies. Methods. For each of the models, which cover four different masses and different evolution stages on the red-giant branch, we computed full sets of low-degree oscillation frequencies using a single pulsation code and, from these frequencies, typical asteroseismic diagnostics. In addition, we carried out preliminary analyses to relate differences in the oscillation properties to the corresponding model differences. Results. In general, the differences in asteroseismic properties between the different models greatly exceed the observational precision of these properties, in particular for the nonradial modes whose mixed acoustic and gravity-wave character makes them sensitive to the structure of the deep stellar interior. In some cases, identifying these differences led to improvements in the final models presented here and in Paper I; here we illustrate particular examples of this. Conclusions. Further improvements in stellar modelling are required in order fully to utilise the observational accuracy to probe intrinsic limitations in the modelling. However, our analysis of the frequency differences and their relation to stellar internal properties provides a striking illustration of the potential of the mixed modes of red-giant stars for the diagnostics of stellar interiors.
Context: We present a newly discovered class of low-luminosity, dusty, evolved objects in the Magellanic Clouds. These objects have dust excesses, stellar parameters, and spectral energy distributions similar to those of dusty post-asymptotic giant branch (post-AGB) stars. However, they have lower luminosities and hence lower masses. We suggest that they have evolved off the red giant branch (RGB) instead of the AGB as a result of binary interaction. Aims: In this study we aim to place these objects in an evolutionary context and establish an evolutionary connection between RGB binaries (such as the sequence E variables) and our new sample of objects. Methods: We compared the theoretically predicted birthrates of the progeny of RGB binaries to the observational birthrates of the new sample of objects. Results: We find that there is order-of-magnitude agreement between the observed and predicted birthrates of post-RGB stars. The sources of uncertainty in the birthrates are discussed; the most important sources are probably the observational incompleteness factor and the post-RGB evolution rates. We also note that mergers are relatively common low on the RGB and that stars low on the RGB with mid-IR excesses may recently have undergone a merger. Conclusions: Our sample of dusty post-RGB stars most likely provides the first observational evidence for a newly discovered phase in binary evolution: post-RGB binaries with circumstellar dust.
Obtaining accurate and precise masses and ages for large numbers of giant stars is of great importance for unraveling the assemblage history of the Galaxy. In this paper, we estimate masses and ages of 6940 red giant branch (RGB) stars with asteroseismic parameters deduced from emph{Kepler} photometry and stellar atmospheric parameters derived from LAMOST spectra. The typical uncertainties of mass is a few per cent, and that of age is $sim$,20 per cent. The sample stars reveal two separate sequences in the age -- [$alpha$/Fe] relation -- a high--$alpha$ sequence with stars older than $sim$,8,Gyr and a low--$alpha$ sequence composed of stars with ages ranging from younger than 1,Gyr to older than 11,Gyr. We further investigate the feasibility of deducing ages and masses directly from LAMOST spectra with a machine learning method based on kernel based principal component analysis, taking a sub-sample of these RGB stars as a training data set. We demonstrate that ages thus derived achieve an accuracy of $sim$,24 per cent. We also explored the feasibility of estimating ages and masses based on the spectroscopically measured carbon and nitrogen abundances. The results are quite satisfactory and significantly improved compared to the previous studies.