No Arabic abstract
We have investigated low-temperature crystal structure of BiCh2-based compounds LaO1-xFxBiSSe (x = 0, 0.01, 0.02, 0.03, and 0.5), in which anomalous two-fold-symmetric in-plane anisotropy of superconducting states has been observed for x = 0.5. From synchrotron X-ray diffraction experiments, a structural transition from tetragonal to monoclinic was observed for x = 0 and 0.01 at 340 and 240 K, respectively. For x = 0.03, a structural transition and broadening of the diffraction peak were not observed down to 100 K. These facts suggest that the structural transition could be suppressed by 3% F substitution in LaO1-xFxBiSSe. Furthermore, the crystal structure for x = 0.5 at 4 K was examined by low-temperature (laboratory) X-ray diffraction, which confirmed that the tetragonal structure is maintained at 4 K for x = 0.5. Our results suggest that the two-fold-symmetric in-plane anisotropy of superconducting states observed for LaO0.5F0.5BiSSe was not originated from structural symmetry lowering.
The competition of magnetic order and superconductivity is a key element in the physics of all unconventional superconductors, e.g. in high-transition-temperature cuprates 1, heavy fermions 2 and organic superconductors3. Here superconductivity is often found close to a quantum critical point where long-range antiferromagnetic order is gradually suppressed as a function of a control parameter, e.g. charge carrier doping or pressure. It is believed that dynamic spin fluctuations associated with this quantum critical behaviour are crucial for the mechanism of superconductivity. Recently high-temperature superconductivity has been discovered in iron-pnictides providing a new class of unconventional superconductors4,5,6. Similar to other unconventional superconductors the parent compounds of the pnictides exhibit a magnetic ground state7,8 and superconductivity is induced upon charge carrier doping. In this Letter the structural and electronic phase diagram is investigated by means of x-ray scattering, MuSR and Moessbauer spectroscopy on the series LaO1-xFxFeAs. We find a discontinuous first-order-like change of the Neel temperature, the superconducting transition temperature and of the respective order parameters. Our results strongly question the relevance of quantum critical behaviour in ironpnictides and prove a strong coupling of the structural orthorhombic distortion and the magnetic order both disappearing at the phase boundary to the superconducting state.
SrRh2As2 exhibits structural phase transitions reminiscent to those of BaFe2As2, but crystallizes with three polymorphs derived from the tetragonal ThCr2Si2-type structure. The structure of alpha-SrRh2As2 is monoclinic with a = 421.2(1) pm, b = 1105.6(2) pm, c = 843.0(1) pm and beta = 95{deg} and was refined as a partially pseudo meroedric twin in the space group P21/c with R1 = 0.0928. beta-SrRh2As2 crystallizes with a modulated structure in the (3+1) dimensional superspace group Fmmm(10gamma)sigma 00 with the unit cell parameters a = 1114.4(3) pm, b = 574.4(2) pm and c = 611.5(2) pm and an incommensurable modulation vector q = (1, 0, 0.3311(4)). High temperature single crystal diffraction experiments confirm the tetragonal ThCr2Si2-type structure for gamma-SrRh2As2 above 350{deg}C. Electronic band structure calculations indicate that the structural distortion in alpha-SrRh2As2 is caused by strong Rh-Rh bonding interactions and has no magnetic origin as suggested for isotypic BaFe2As2.
The IrTe2 transition metal dichalcogenide undergoes a series of structural and electronic phase transitions when doped with Pt. The nature of each phase and the mechanism of the phase transitions have attracted much attention. In this paper, we report scanning tunneling microscopy and spectroscopy studies of Pt doped IrTe2 with varied Pt contents. In pure IrTe2, we find that the ground state has a 1/6 superstructure, and the electronic structure is inconsistent with Fermi surface nesting induced charge density wave order. Upon Pt doping, the crystal structure changes to a 1/5 superstructure and then to a quasi-periodic hexagonal phase. First principles calculations show that the superstructures and electronic structures are determined by the global chemical strain and local impurity states that can be tuned systematically by Pt doping.
The tetragonal-to-orthorhombic structural phase transition (SPT) in LaFeAsO (La-1111) and SmFeAsO (Sm-1111) single crystals measured by high resolution x-ray diffraction is found to be sharp while the RFeAsO (R=La, Nd, Pr, Sm) polycrystalline samples show a broad continuous SPT. Comparing the polycrystalline and the single crystal 1111 samples, the critical exponents of the SPT are found to be the same while the correlation length critical exponents are found to be very different. These results imply that the lattice fluctuations in 1111 systems change in samples with different surface to volume ratio that is assigned to the relieve of the temperature dependent superlattice misfit strain between active iron layers and the spacer layers in 1111 systems. This phenomenon that is missing in the AFe2As2 (A=Ca, Sr, Ba) 122 systems, with the same electronic structure but different for the thickness and the elastic constant of the spacer layers, is related with the different maximum superconducting transition temperature in the 1111 (55 K) versus 122 (35 K) systems and implies the surface reconstruction in 1111 single crystals.
We present x-ray powder diffraction (XRPD) and neutron diffraction measurements on the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm = 70K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase of the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation, previously observed in the same material, and with the effect of lattice softening below the magnetic phase transition. We employ density functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states, and to quantify the lattice softening, showing that it can account for a major part of the observed increase of the microstrain.