Do you want to publish a course? Click here

The electronic phase diagram of the LaO1-xFxFeAs superconductor

293   0   0.0 ( 0 )
 Added by Hans-Henning Klauss
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The competition of magnetic order and superconductivity is a key element in the physics of all unconventional superconductors, e.g. in high-transition-temperature cuprates 1, heavy fermions 2 and organic superconductors3. Here superconductivity is often found close to a quantum critical point where long-range antiferromagnetic order is gradually suppressed as a function of a control parameter, e.g. charge carrier doping or pressure. It is believed that dynamic spin fluctuations associated with this quantum critical behaviour are crucial for the mechanism of superconductivity. Recently high-temperature superconductivity has been discovered in iron-pnictides providing a new class of unconventional superconductors4,5,6. Similar to other unconventional superconductors the parent compounds of the pnictides exhibit a magnetic ground state7,8 and superconductivity is induced upon charge carrier doping. In this Letter the structural and electronic phase diagram is investigated by means of x-ray scattering, MuSR and Moessbauer spectroscopy on the series LaO1-xFxFeAs. We find a discontinuous first-order-like change of the Neel temperature, the superconducting transition temperature and of the respective order parameters. Our results strongly question the relevance of quantum critical behaviour in ironpnictides and prove a strong coupling of the structural orthorhombic distortion and the magnetic order both disappearing at the phase boundary to the superconducting state.



rate research

Read More

We investigated the magnetic phase diagram of the first Pr-based heavy fermion superconductor PrOs4Sb12 by means of high-resolution dc magnetization measurements in low temperatures down to 0.06K. The temperature dependence of the magnetization M(T) at 0.1kOe exhibits two distinct anomalies at Tc1=1.83K and Tc2=1.65K, in agreement with the specific heat measurements at zero field. Increasing magnetic field H, both Tc1(H) and Tc2(H) move toward lower temperatures without showing a tendency of intersecting to each other. Above 10kOe, the transition at Tc2(H) appears to merge into a line of the peak effect which is observed near the upper critical field Hc2 in the isothermal M(H) curves, suggesting a common origin for these two phenomena. The presence of the field-induced ordered phase (called phase A here) is confirmed for three principal directions above 40kOe, with the anisotropic A-phase transition temperature TA: TA[100] > TA[111] >TA[110]. The present results are discussed on the basis of crystalline-electrical-field level schemes with a non-magnetic ground state, with emphasis on a Gamma1 singlet as the possible ground state of Pr3+ in PrOs4Sb12.
The mechanism of superconductivity and magnetism and their possible interplay have recently been under debate in pnictides. A likely pairing mechanism includes an important role of spin fluctuations and can be expressed in terms of the magnetic susceptibility chi. The latter is therefore a key quantity in the determination of both the magnetic properties of the system in the normal state, and of the contribution of spin fluctuations to the pairing potential. A basic ingredient to obtain chi is the independent-electron susceptibility chi0. Using LaO1-xFxFeAs as a prototype material, in this report we present a detailed ab-initio study of chi0(q,omega), as a function of doping and of the internal atomic positions. The resulting static chi0(q,0) is consistent with both the observed M-point related magnetic stripe phase in the parent compound, and with the existence of incommensurate magnetic structures predicted by ab-initio calculations upon doping.
197 - C. Hess , A. Kondrat , A. Narduzzo 2009
We present the first comprehensive derivation of the intrinsic electronic phase diagram of the iron-oxypnictide superconductors in the normal state based on the analysis of the electrical resistivity $rho$ of both LaFeAsO$_{1-x}$F$_x$ and SmFeAsO$_{1-x}$F$_x$ for a wide range of doping. Our data give clear-cut evidence for unusual normal state properties in these new materials. In particular, the emergence of superconductivity at low doping levels is accompanied by distinct anomalous transport behavior in $rho$ of the normal state which is reminiscent of the spin density wave (SDW) signature in the parent material. At higher doping levels $rho$ of LaFeAsO$_{1-x}$F$_x$ shows a clear transition from this pseudogap-like behavior to Fermi liquid-like behavior, mimicking the phase diagram of the cuprates. Moreover, our data reveal a correlation between the strength of the anomalous features and the stability of the superconducting phase. The pseudogap-like features become stronger in SmFeAsO$_{1-x}$F$_x$ where superconductivity is enhanced and vanish when superconductivity is reduced in the doping region with Fermi liquid-like behavior.
Results of Fe K-, As K-, and La L3-edge x-ray absorption near edge structure (XANES) measurements on LaO1-xFxFeAs compounds are presented. The Fe K- edge exhibits a chemical shift to lower energy, near edge feature modifications, and pre-edge feature suppression as a result of F substitution for O. The former two changes provide evidence of electron charge transfer to the Fe sites and the latter directly supports the delivery of this charge into the Fe-3d orbitals. The As K- edge measurements show spectral structures typical of compounds with planes of transition-metal tetrahedrally coordinated to p-block elements as is illustrated by comparison to other such materials. The insensitivity of the As-K edge to doping, along with the strong Fe-K doping response, is consistent with band structure calculations showing essentially pure Fe-d character near the Fermi energy in these materials. The energy of the continuum resonance feature above the La-L3 edge is shown to be quantitatively consistent with the reported La-O inter-atomic separation and with other oxide compounds containing rare earth elements.
We have investigated low-temperature crystal structure of BiCh2-based compounds LaO1-xFxBiSSe (x = 0, 0.01, 0.02, 0.03, and 0.5), in which anomalous two-fold-symmetric in-plane anisotropy of superconducting states has been observed for x = 0.5. From synchrotron X-ray diffraction experiments, a structural transition from tetragonal to monoclinic was observed for x = 0 and 0.01 at 340 and 240 K, respectively. For x = 0.03, a structural transition and broadening of the diffraction peak were not observed down to 100 K. These facts suggest that the structural transition could be suppressed by 3% F substitution in LaO1-xFxBiSSe. Furthermore, the crystal structure for x = 0.5 at 4 K was examined by low-temperature (laboratory) X-ray diffraction, which confirmed that the tetragonal structure is maintained at 4 K for x = 0.5. Our results suggest that the two-fold-symmetric in-plane anisotropy of superconducting states observed for LaO0.5F0.5BiSSe was not originated from structural symmetry lowering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا