No Arabic abstract
We address the optimal constants in the strong and the weak Stechkin inequalities, both in their discrete and continuous variants. These inequalities appear in the characterization of approximation spaces which arise from sparse approximation or have applications to interpolation theory. An elementary proof of a constant in the strong discrete Stechkin inequality given by Bennett is provided, and we improve the constants given by Levin and Stechkin and by Copson. Finally, the minimal constants in the weak discrete Stechkin inequalities and both continuous Stechkin inequalities are presented.
Let ${mathbb{P}_t}_{t>0}$ be the classical Poisson semigroup on $mathbb{R}^d$ and $G^{mathbb{P}}$ the associated Littlewood-Paley $g$-function operator: $$G^{mathbb{P}}(f)=Big(int_0^infty t|frac{partial}{partial t} mathbb{P}_t(f)|^2dtBig)^{frac12}.$$ The classical Littlewood-Paley $g$-function inequality asserts that for any $1<p<infty$ there exist two positive constants $mathsf{L}^{mathbb{P}}_{t, p}$ and $mathsf{L}^{mathbb{P}}_{c, p}$ such that $$ big(mathsf{L}^{mathbb{P}}_{t, p}big)^{-1}big|fbig|_{p}le big|G^{mathbb{P}}(f)big|_{p} le mathsf{L}^{mathbb{P}}_{c,p}big|fbig|_{p},,quad fin L_p(mathbb{R}^d). $$ We determine the optimal orders of magnitude on $p$ of these constants as $pto1$ and $ptoinfty$. We also consider similar problems for more general test functions in place of the Poisson kernel. The corresponding problem on the Littlewood-Paley dyadic square function inequality is investigated too. Let $Delta$ be the partition of $mathbb{R}^d$ into dyadic rectangles and $S_R$ the partial sum operator associated to $R$. The dyadic Littlewood-Paley square function of $f$ is $$S^Delta(f)=Big(sum_{RinDelta} |S_R(f)|^2Big)^{frac12}.$$ For $1<p<infty$ there exist two positive constants $mathsf{L}^{Delta}_{c,p, d}$ and $ mathsf{L}^{Delta}_{t,p, d}$ such that $$ big(mathsf{L}^{Delta}_{t,p, d}big)^{-1}big|fbig|_{p}le big|S^Delta(f)big|_{p}le mathsf{L}^{Delta}_{c,p, d}big|fbig|_{p},quad fin L_p(mathbb{R}^d). $$ We show that $$mathsf{L}^{Delta}_{t,p, d}approx_d (mathsf{L}^{Delta}_{t,p, 1})^d;text{ and }; mathsf{L}^{Delta}_{c,p, d}approx_d (mathsf{L}^{Delta}_{c,p, 1})^d.$$ All the previous results can be equally formulated for the $d$-torus $mathbb{T}^d$. We prove a de Leeuw type transference principle in the vector-valued setting.
Let $A_infty ^+$ denote the class of one-sided Muckenhoupt weights, namely all the weights $w$ for which $mathsf M^+:L^p(w)to L^{p,infty}(w)$ for some $p>1$, where $mathsf M^+$ is the forward Hardy-Littlewood maximal operator. We show that $win A_infty ^+$ if and only if there exist numerical constants $gammain(0,1)$ and $c>0$ such that $$ w({x in mathbb{R} : , mathsf M ^+mathbf 1_E (x)>gamma})leq c w(E) $$ for all measurable sets $Esubset mathbb R$. Furthermore, letting $$ mathsf C_w ^+(alpha):= sup_{0<w(E)<+infty} frac{1}{w(E)} w({xinmathbb R:,mathsf M^+mathbf 1_E (x)>alpha}) $$ we show that for all $win A_infty ^+$ we have the asymptotic estimate $mathsf C_w ^+ (alpha)-1lesssim (1-alpha)^frac{1}{c[w]_{A_infty ^+}}$ for $alpha$ sufficiently close to $1$ and $c>0$ a numerical constant, and that this estimate is best possible. We also show that the reverse Holder inequality for one-sided Muckenhoupt weights, previously proved by Martin-Reyes and de la Torre, is sharp, thus providing a quantitative equivalent definition of $A_infty ^+$. Our methods also allow us to show that a weight $win A_infty ^+$ satisfies $win A_p ^+$ for all $p>e^{c[w]_{A_infty ^+}}$.
The Fourier transform truncated on [-c,c] is usually analyzed when acting on L^2(-1/b,1/b) and its right-singular vectors are the prolate spheroidal wave functions. This paper considers the operator acting on the larger space L^2(exp(b|.|)) on which it remains injective. We give nonasymptotic upper and lower bounds on the singular values with similar qualitative behavior in m (the index), b, and c. The lower bounds are used to obtain rates of convergence for stable analytic continuation of possibly nonbandlimited functions whose Fourier transform belongs to L^2(exp(b|.|)). We also derive bounds on the sup-norm of the singular functions. Finally, we propose a numerical method to compute the SVD and apply it to stable analytic continuation when the function is observed with error on an interval.
We characterize the Schauder and unconditional basis properties for the Haar system in the Triebel-Lizorkin spaces $F^s_{p,q}(Bbb R^d)$, at the endpoint cases $s=1$, $s=d/p-d$ and $p=infty$. Together with the earlier results in [10], [4], this completes the picture for such properties in the Triebel-Lizorkin scale, and complements a similar study for the Besov spaces given in [5].
We discuss the concept of inner function in reproducing kernel Hilbert spaces with an orthogonal basis of monomials and examine connections between inner functions and optimal polynomial approximants to $1/f$, where $f$ is a function in the space. We revisit some classical examples from this perspective, and show how a construction of Shapiro and Shields can be modified to produce inner functions.