Do you want to publish a course? Click here

Efficient Contextual Bandits with Continuous Actions

93   0   0.0 ( 0 )
 Added by Chicheng Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We create a computationally tractable algorithm for contextual bandits with continuous actions having unknown structure. Our reduction-style algorithm composes with most supervised learning representations. We prove that it works in a general sense and verify the new functionality with large-scale experiments.



rate research

Read More

We propose the Generalized Policy Elimination (GPE) algorithm, an oracle-efficient contextual bandit (CB) algorithm inspired by the Policy Elimination algorithm of cite{dudik2011}. We prove the first regret optimality guarantee theorem for an oracle-efficient CB algorithm competing against a nonparametric class with infinite VC-dimension. Specifically, we show that GPE is regret-optimal (up to logarithmic factors) for policy classes with integrable entropy. For classes with larger entropy, we show that the core techniques used to analyze GPE can be used to design an $varepsilon$-greedy algorithm with regret bound matching that of the best algorithms to date. We illustrate the applicability of our algorithms and theorems with examples of large nonparametric policy classes, for which the relevant optimization oracles can be efficiently implemented.
We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP guarantee. Based on our frameworks, we can improve previous best results for private bandits learning with one-point feedback, such as private Bandits Convex Optimization, and obtain the first result for Bandits Convex Optimization (BCO) with multi-point feedback under LDP. LDP guarantee and black-box nature make our frameworks more attractive in real applications compared with previous specifically designed and relatively weaker differentially private (DP) context-free bandits algorithms. Further, we extend our $(varepsilon, delta)$-LDP algorithm to Generalized Linear Bandits, which enjoys a sub-linear regret $tilde{O}(T^{3/4}/varepsilon)$ and is conjectured to be nearly optimal. Note that given the existing $Omega(T)$ lower bound for DP contextual linear bandits (Shariff & Sheffe, 2018), our result shows a fundamental difference between LDP and DP contextual bandits learning.
A major research direction in contextual bandits is to develop algorithms that are computationally efficient, yet support flexible, general-purpose function approximation. Algorithms based on modeling rewards have shown strong empirical performance, but typically require a well-specified model, and can fail when this assumption does not hold. Can we design algorithms that are efficient and flexible, yet degrade gracefully in the face of model misspecification? We introduce a new family of oracle-efficient algorithms for $varepsilon$-misspecified contextual bandits that adapt to unknown model misspecification -- both for finite and infinite action settings. Given access to an online oracle for square loss regression, our algorithm attains optimal regret and -- in particular -- optimal dependence on the misspecification level, with no prior knowledge. Specializing to linear contextual bandits with infinite actions in $d$ dimensions, we obtain the first algorithm that achieves the optimal $O(dsqrt{T} + varepsilonsqrt{d}T)$ regret bound for unknown misspecification level $varepsilon$. On a conceptual level, our results are enabled by a new optimization-based perspective on the regression oracle reduction framework of Foster and Rakhlin, which we anticipate will find broader use.
We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes depend linearly on the context of that arm. The budget/capacity constraints require that the total consumption doesnt exceed the budget for each resource. The objective is once again to maximize the total reward. This problem turns out to be a common generalization of classic linear contextual bandits (linContextual), bandits with knapsacks (BwK), and the online stochastic packing problem (OSPP). We present algorithms with near-optimal regret bounds for this problem. Our bounds compare favorably to results on the unstructured version of the problem where the relation between the contexts and the outcomes could be arbitrary, but the algorithm only competes against a fixed set of policies accessible through an optimization oracle. We combine techniques from the work on linContextual, BwK, and OSPP in a nontrivial manner while also tackling new difficulties that are not present in any of these special cases.
Online learning algorithms, widely used to power search and content optimization on the web, must balance exploration and exploitation, potentially sacrificing the experience of current users in order to gain information that will lead to better decisions in the future. While necessary in the worst case, explicit exploration has a number of disadvantages compared to the greedy algorithm that always exploits by choosing an action that currently looks optimal. We ask under what conditions inherent diversity in the data makes explicit exploration unnecessary. We build on a recent line of work on the smoothed analysis of the greedy algorithm in the linear contextual bandits model. We improve on prior results to show that a greedy approach almost matches the best possible Bayesian regret rate of any other algorithm on the same problem instance whenever the diversity conditions hold, and that this regret is at most $tilde O(T^{1/3})$.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا