Do you want to publish a course? Click here

Greedy Algorithm almost Dominates in Smoothed Contextual Bandits

107   0   0.0 ( 0 )
 Added by Manish Raghavan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Online learning algorithms, widely used to power search and content optimization on the web, must balance exploration and exploitation, potentially sacrificing the experience of current users in order to gain information that will lead to better decisions in the future. While necessary in the worst case, explicit exploration has a number of disadvantages compared to the greedy algorithm that always exploits by choosing an action that currently looks optimal. We ask under what conditions inherent diversity in the data makes explicit exploration unnecessary. We build on a recent line of work on the smoothed analysis of the greedy algorithm in the linear contextual bandits model. We improve on prior results to show that a greedy approach almost matches the best possible Bayesian regret rate of any other algorithm on the same problem instance whenever the diversity conditions hold, and that this regret is at most $tilde O(T^{1/3})$.

rate research

Read More

Bandit learning is characterized by the tension between long-term exploration and short-term exploitation. However, as has recently been noted, in settings in which the choices of the learning algorithm correspond to important decisions about individual people (such as criminal recidivism prediction, lending, and sequential drug trials), exploration corresponds to explicitly sacrificing the well-being of one individual for the potential future benefit of others. This raises a fairness concern. In such settings, one might like to run a greedy algorithm, which always makes the (myopically) optimal decision for the individuals at hand - but doing this can result in a catastrophic failure to learn. In this paper, we consider the linear contextual bandit problem and revisit the performance of the greedy algorithm. We give a smoothed analysis, showing that even when contexts may be chosen by an adversary, small perturbations of the adversarys choices suffice for the algorithm to achieve no regret, perhaps (depending on the specifics of the setting) with a constant amount of initial training data. This suggests that generically (i.e. in slightly perturbed environments), exploration and exploitation need not be in conflict in the linear setting.
We propose the Generalized Policy Elimination (GPE) algorithm, an oracle-efficient contextual bandit (CB) algorithm inspired by the Policy Elimination algorithm of cite{dudik2011}. We prove the first regret optimality guarantee theorem for an oracle-efficient CB algorithm competing against a nonparametric class with infinite VC-dimension. Specifically, we show that GPE is regret-optimal (up to logarithmic factors) for policy classes with integrable entropy. For classes with larger entropy, we show that the core techniques used to analyze GPE can be used to design an $varepsilon$-greedy algorithm with regret bound matching that of the best algorithms to date. We illustrate the applicability of our algorithms and theorems with examples of large nonparametric policy classes, for which the relevant optimization oracles can be efficiently implemented.
In the contextual linear bandit setting, algorithms built on the optimism principle fail to exploit the structure of the problem and have been shown to be asymptotically suboptimal. In this paper, we follow recent approaches of deriving asymptotically optimal algorithms from problem-dependent regret lower bounds and we introduce a novel algorithm improving over the state-of-the-art along multiple dimensions. We build on a reformulation of the lower bound, where context distribution and exploration policy are decoupled, and we obtain an algorithm robust to unbalanced context distributions. Then, using an incremental primal-dual approach to solve the Lagrangian relaxation of the lower bound, we obtain a scalable and computationally efficient algorithm. Finally, we remove forced exploration and build on confidence intervals of the optimization problem to encourage a minimum level of exploration that is better adapted to the problem structure. We demonstrate the asymptotic optimality of our algorithm, while providing both problem-dependent and worst-case finite-time regret guarantees. Our bounds scale with the logarithm of the number of arms, thus avoiding the linear dependence common in all related prior works. Notably, we establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits. Finally, we verify that our algorithm obtains better empirical performance than state-of-the-art baselines.
A major research direction in contextual bandits is to develop algorithms that are computationally efficient, yet support flexible, general-purpose function approximation. Algorithms based on modeling rewards have shown strong empirical performance, but typically require a well-specified model, and can fail when this assumption does not hold. Can we design algorithms that are efficient and flexible, yet degrade gracefully in the face of model misspecification? We introduce a new family of oracle-efficient algorithms for $varepsilon$-misspecified contextual bandits that adapt to unknown model misspecification -- both for finite and infinite action settings. Given access to an online oracle for square loss regression, our algorithm attains optimal regret and -- in particular -- optimal dependence on the misspecification level, with no prior knowledge. Specializing to linear contextual bandits with infinite actions in $d$ dimensions, we obtain the first algorithm that achieves the optimal $O(dsqrt{T} + varepsilonsqrt{d}T)$ regret bound for unknown misspecification level $varepsilon$. On a conceptual level, our results are enabled by a new optimization-based perspective on the regression oracle reduction framework of Foster and Rakhlin, which we anticipate will find broader use.
Bandit learning algorithms typically involve the balance of exploration and exploitation. However, in many practical applications, worst-case scenarios needing systematic exploration are seldom encountered. In this work, we consider a smoothed setting for structured linear contextual bandits where the adversarial contexts are perturbed by Gaussian noise and the unknown parameter $theta^*$ has structure, e.g., sparsity, group sparsity, low rank, etc. We propose simple greedy algorithms for both the single- and multi-parameter (i.e., different parameter for each context) settings and provide a unified regret analysis for $theta^*$ with any assumed structure. The regret bounds are expressed in terms of geometric quantities such as Gaussian widths associated with the structure of $theta^*$. We also obtain sharper regret bounds compared to earlier work for the unstructured $theta^*$ setting as a consequence of our improved analysis. We show there is implicit exploration in the smoothed setting where a simple greedy algorithm works.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا