Do you want to publish a course? Click here

Computational Design and Evaluation Methods for Empowering Non-Experts in Digital Fabrication

113   0   0.0 ( 0 )
 Added by Nurcan Gecer Ulu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Despite the increasing availability of personal fabrication hardware and services, the true potential of digital fabrication remains unrealized due to lack of computational techniques that can support 3D shape design by non-experts. This work develops computational methods that address two key aspects of content creation:(1) Function-driven design synthesis, (2) Design assessment. For design synthesis, a generative shape modeling algorithm that facilitates automatic geometry synthesis and user-driven modification for non-experts is introduced. A critical observation that arises from this study is that the most geometrical specifications are dictated by functional requirements. To support design by high-level functional prescriptions, a physics based shape optimization method for compliant coupling behavior design has been developed. In line with this idea, producing complex 3D surfaces from flat 2D sheets by exploiting the concept of buckling beams has also been explored. Effective design assessment, the second key aspect, becomes critical for problems in which computational solutions do not exist. For these problems, this work proposes crowdsourcing as a way to empower non-experts in esoteric design domains that traditionally require expertise and specialized knowledge.



rate research

Read More

Past work on optimizing fabrication plans given a carpentry design can provide Pareto-optimal plans trading off between material waste, fabrication time, precision, and other considerations. However, when developing fabrication plans, experts rarely restrict to a single design, instead considering families of design variations, sometimes adjusting designs to simplify fabrication. Jointly exploring the design and fabrication plan spaces for each design is intractable using current techniques. We present a new approach to jointly optimize design and fabrication plans for carpentered objects. To make this bi-level optimization tractable, we adapt recent work from program synthesis based on equality graphs (e-graphs), which encode sets of equivalent programs. Our insight is that subproblems within our bi-level problem share significant substructures. By representing both designs and fabrication plans in a new bag of parts(BOP) e-graph, we amortize the cost of optimizing design components shared among multiple candidates. Even using BOP e-graphs, the optimization space grows quickly in practice. Hence, we also show how a feedback-guided search strategy dubbed Iterative Contraction and Expansion on E-graphs(ICEE) can keep the size of the e-graph manage-able and direct the search toward promising candidates. We illustrate the advantages of our pipeline through examples from the carpentry domain.
Past work on optimizing fabrication plans given a carpentry design can provide Pareto-optimal plans trading off between material waste, fabrication time, precision, and other considerations. However, when developing fabrication plans, experts rarely restrict to a single design, instead considering families of design variations, sometimes adjusting designs to simplify fabrication. Jointly exploring the design and fabrication plan spaces for each design is intractable using current techniques. We present a new approach to jointly optimize design and fabrication plans for carpentered objects. To make this bi-level optimization tractable, we adapt recent work from program synthesis based on equality graphs (e-graphs), which encode sets of equivalent programs. Our insight is that subproblems within our bi-level problem share significant substructures. By representing both designs and fabrication plans in a new bag of parts(BOP) e-graph, we amortize the cost of optimizing design components shared among multiple candidates. Even using BOP e-graphs, the optimization space grows quickly in practice. Hence, we also show how a feedback-guided search strategy dubbed Iterative Contraction and Expansion on E-graphs (ICEE) can keep the size of the e-graph manage-able and direct the search toward promising candidates. We illustrate the advantages of our pipeline through examples from the carpentry domain.
Trusses are load-carrying light-weight structures consisting of bars connected at joints ubiquitously applied in a variety of engineering scenarios. Designing optimal trusses that satisfy functional specifications with a minimal amount of material has interested both theoreticians and practitioners for more than a century. In this paper, we introduce two main ideas to improve upon the state of the art. First, we formulate an alternating linear programming problem for geometry optimization. Second, we introduce two sets of complementary topological operations, including a novel subdivision scheme for global topology refinement inspired by Michells famed theoretical study. Based on these two ideas, we build an efficient computational framework for the design of lightweight trusses. AD{We illustrate our framework with a variety of functional specifications and extensions. We show that our method achieves trusses with smaller volumes and is over two orders of magnitude faster compared with recent state-of-the-art approaches.
We present a computational design system that assists users to model, optimize, and fabricate quad-robots with soft skins.Our system addresses the challenging task of predicting their physical behavior by fully integrating the multibody dynamics of the mechanical skeleton and the elastic behavior of the soft skin. The developed motion control strategy uses an alternating optimization scheme to avoid expensive full space time-optimization, interleaving space-time optimization for the skeleton and frame-by-frame optimization for the full dynamics. The output are motor torques to drive the robot to achieve a user prescribed motion trajectory.We also provide a collection of convenient engineering tools and empirical manufacturing guidance to support the fabrication of the designed quad-robot. We validate the feasibility of designs generated with our system through physics simulations and with a physically-fabricated prototype.
Motivation: Uncovering the genomic causes of cancer, known as cancer driver genes, is a fundamental task in biomedical research. Cancer driver genes drive the development and progression of cancer, thus identifying cancer driver genes and their regulatory mechanism is crucial to the design of cancer treatment and intervention. Many computational methods, which take the advantages of computer science and data science, have been developed to utilise multiple types of genomic data to reveal cancer drivers and their regulatory mechanism behind cancer development and progression. Due to the complexity of the mechanistic insight of cancer genes in driving cancer and the fast development of the field, it is necessary to have a comprehensive review about the current computational methods for discovering different types of cancer drivers. Results: We survey computational methods for identifying cancer drivers from genomic data. We categorise the methods into three groups, methods for single driver identification, methods for driver module identification, and methods for identifying personalised cancer drivers. We also conduct a case study to compare the performance of the current methods. We further analyse the advantages and limitations of the current methods, and discuss the challenges and future directions of the topic. In addition, we investigate the resources for discovering and validating cancer drivers in order to provide a one-stop reference of the tools to facilitate cancer driver discovery. The ultimate goal of the paper is to help those interested in the topic to establish a solid background to carry out further research in the field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا