No Arabic abstract
COVID-19 has forced quarantine measures in several countries across the world. These measures have proven to be effective in significantly reducing the prevalence of the virus. To date, no effective treatment or vaccine is available. In the effort of preserving both public health as well as the economical and social textures, France and Italy governments have partially released lockdown measures. Here we extrapolate the long-term behavior of the epidemics in both countries using a Susceptible-Exposed-Infected-Recovered (SEIR) model where parameters are stochastically perturbed to handle the uncertainty in the estimates of COVID-19 prevalence. Our results suggest that uncertainties in both parameters and initial conditions rapidly propagate in the model and can result in different outcomes of the epidemics leading or not to a second wave of infections. Using actual knowledge, asymptotic estimates of COVID-19 prevalence can fluctuate of order of ten millions units in both countries.
OBJECTIVES: to describe the first wave of the COVID-19 pandemic with a focus on undetected cases and to evaluate different post-lockdown scenarios. DESIGN: the study introduces a SEIR compartmental model, taking into account the region-specific fraction of undetected cases, the effects of mobility restrictions, and the personal protective measures adopted, such as wearing a mask and washing hands frequently. SETTING AND PARTICIPANTS: the model is experimentally validated with data of all the Italian regions, some European countries, and the US. MAIN OUTCOME MEASURES: the accuracy of the model results is measured through the mean absolute percentage error (MAPE) and Lewis criteria; fitting parameters are in good agreement with previous literature. RESULTS: the epidemic curves for different countries and the amount of undetected and asymptomatic cases are estimated, which are likely to represent the main source of infections in the near future. The model is applied to the Hubei case study, which is the first place to relax mobility restrictions. Results show different possible scenarios. Mobility and the adoption of personal protective measures greatly influence the dynamics of the infection, determining either a huge and rapid secondary epidemic peak or a more delayed and manageable one. CONCLUSIONS: mathematical models can provide useful insights for healthcare decision makers to determine the best strategy in case of future outbreaks.
India has been hit by a huge second wave of Covid-19 that started in mid-February 2021. Mumbai was amongst the first cities to see the increase. In this report, we use our agent based simulator to computationally study the second wave in Mumbai. We build upon our earlier analysis, where projections were made from November 2020 onwards. We use our simulator to conduct an extensive scenario analysis - we play out many plausible scenarios through varying economic activity, reinfection levels, population compliance, infectiveness, prevalence and lethality of the possible variant strains, and infection spread via local trains to arrive at those that may better explain the second wave fatality numbers. We observe and highlight that timings of peak and valley of the fatalities in the second wave are robust to many plausible scenarios, suggesting that they are likely to be accurate projections for Mumbai. During the second wave, the observed fatalities were low in February and mid-March and saw a phase change or a steep increase in the growth rate after around late March. We conduct extensive experiments to replicate this observed sharp convexity. This is not an easy phenomena to replicate, and we find that explanations such as increased laxity in the population, increased reinfections, increased intensity of infections in Mumbai transportation, increased lethality in the virus, or a combination amongst them, generally do a poor job of matching this pattern. We find that the most likely explanation is presence of small amount of extremely infective variant on February 1 that grows rapidly thereafter and becomes a dominant strain by Mid-March. From a prescriptive view, this points to an urgent need for extensive and continuous genome sequencing to establish existence and prevalence of different virus strains in Mumbai and in India, as they evolve over time.
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic threatens the health of humans and causes great economic losses. Predictive modelling and forecasting the epidemic trends are essential for developing countermeasures to mitigate this pandemic. We develop a network model, where each node represents an individual and the edges represent contacts between individuals where the infection can spread. The individuals are classified based on the number of contacts they have each day (their node degrees) and their infection status. The transmission network model was respectively fitted to the reported data for the COVID-19 epidemic in Wuhan (China), Toronto (Canada), and the Italian Republic using a Markov Chain Monte Carlo (MCMC) optimization algorithm. Our model fits all three regions well with narrow confidence intervals and could be adapted to simulate other megacities or regions. The model projections on the role of containment strategies can help inform public health authorities to plan control measures.
A second wave of SARS-CoV-2 is unfolding in dozens of countries. However, this second wave manifests itself strongly in new reported cases, but less in death counts compared to the first wave. Over the past three months in Germany, the reported cases increased by a factor five or more, whereas the death counts hardly grew. This discrepancy fueled speculations that the rise of reported cases would not reflect a second wave but only wider testing. We find that this apparent discrepancy can be explained to a large extent by the age structure of the infected, and predict a pronounced increase of death counts in the near future, as the spread once again expands into older age groups. To re-establish control, and to avoid the tipping point when TTI capacity is exceeded, case numbers have to be lowered. Otherwise the control of the spread and the protection of vulnerable people will require more restrictive measures latest when the hospital capacity is reached.
In late December 2019, a novel strand of Coronavirus (SARS-CoV-2) causing a severe, potentially fatal respiratory syndrome (COVID-19) was identified in Wuhan, Hubei Province, China and is causing outbreaks in multiple world countries, soon becoming a pandemic. Italy has now become the most hit country outside of Asia: on March 16, 2020, the Italian Civil Protection documented a total of 27980 confirmed cases and 2158 deaths of people tested positive for SARS-CoV-2. In the context of an emerging infectious disease outbreak, it is of paramount importance to predict the trend of the epidemic in order to plan an effective control strategy and to determine its impact. This paper proposes a new epidemic model that discriminates between infected individuals depending on whether they have been diagnosed and on the severity of their symptoms. The distinction between diagnosed and non-diagnosed is important because non-diagnosed individuals are more likely to spread the infection than diagnosed ones, since the latter are typically isolated, and can explain misperceptions of the case fatality rate and of the seriousness of the epidemic phenomenon. Being able to predict the amount of patients that will develop life-threatening symptoms is important since the disease frequently requires hospitalisation (and even Intensive Care Unit admission) and challenges the healthcare system capacity. We show how the basic reproduction number can be redefined in the new framework, thus capturing the potential for epidemic containment. Simulation results are compared with real data on the COVID-19 epidemic in Italy, to show the validity of the model and compare different possible predicted scenarios depending on the adopted countermeasures.