Do you want to publish a course? Click here

The foreshadow of a second wave: An analysis of current COVID-19 fatalities in Germany

374   0   0.0 ( 0 )
 Added by Jonas Dehning
 Publication date 2020
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

A second wave of SARS-CoV-2 is unfolding in dozens of countries. However, this second wave manifests itself strongly in new reported cases, but less in death counts compared to the first wave. Over the past three months in Germany, the reported cases increased by a factor five or more, whereas the death counts hardly grew. This discrepancy fueled speculations that the rise of reported cases would not reflect a second wave but only wider testing. We find that this apparent discrepancy can be explained to a large extent by the age structure of the infected, and predict a pronounced increase of death counts in the near future, as the spread once again expands into older age groups. To re-establish control, and to avoid the tipping point when TTI capacity is exceeded, case numbers have to be lowered. Otherwise the control of the spread and the protection of vulnerable people will require more restrictive measures latest when the hospital capacity is reached.



rate research

Read More

COVID-19 has forced quarantine measures in several countries across the world. These measures have proven to be effective in significantly reducing the prevalence of the virus. To date, no effective treatment or vaccine is available. In the effort of preserving both public health as well as the economical and social textures, France and Italy governments have partially released lockdown measures. Here we extrapolate the long-term behavior of the epidemics in both countries using a Susceptible-Exposed-Infected-Recovered (SEIR) model where parameters are stochastically perturbed to handle the uncertainty in the estimates of COVID-19 prevalence. Our results suggest that uncertainties in both parameters and initial conditions rapidly propagate in the model and can result in different outcomes of the epidemics leading or not to a second wave of infections. Using actual knowledge, asymptotic estimates of COVID-19 prevalence can fluctuate of order of ten millions units in both countries.
In this work, we adapt the epidemiological SIR model to study the evolution of the dissemination of COVID-19 in Germany and Brazil (nationally, in the State of Paraiba, and in the City of Campina Grande). We prove the well posedness and the continuous dependence of the model dynamics on its parameters. We also propose a simple probabilistic method for the evolution of the active cases that is instrumental for the automatic estimation of parameters of the epidemiological model. We obtained statistical estimates of the active cases based the probabilistic method and on the confirmed cases data. From this estimated time series we obtained a time-dependent contagion rate, which reflects a lower or higher adherence to social distancing by the involved populations. By also analysing the data on daily deaths, we obtained the daily lethality and recovery rates. We then integrate the equations of motion of the model using these time-dependent parameters. We validate our epidemiological model by fitting the official data of confirmed, recovered, death, and active cases due to the pandemic with the theoretical predictions. We obtained very good fits of the data with this method. The automated procedure developed here could be used for basically any population with a minimum of extra work. Finally, we also propose and validate a forecasting method based on Markov chains for the evolution of the epidemiological data for up to two weeks.
Vaccination against COVID-19 with the recently approved mRNA vaccines BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) is currently underway in a large number of countries. However, high incidence rates and rapidly spreading SARS-CoV-2 variants are concerning. In combination with acute supply deficits in Europe in early 2021, the question arises of whether stretching the vaccine, for instance by delaying the second dose, can make a significant contribution to preventing deaths, despite associated risks such as lower vaccine efficacy, the potential emergence of escape mutants, enhancement, waning immunity, reduced social acceptance of off-label vaccination, and liability shifts. A quantitative epidemiological assessment of risks and benefits of non-standard vaccination protocols remains elusive. To clarify the situation and to provide a quantitative epidemiological foundation we develop a stochastic epidemiological model that integrates specific vaccine rollout protocols into a risk-group structured infectious disease dynamical model. Using the situation and conditions in Germany as a reference system, we show that delaying the second vaccine dose is expected to prevent deaths in the four to five digit range, should the incidence resurge. We show that this considerable public health benefit relies on the fact that both mRNA vaccines provide substantial protection against severe COVID-19 and death beginning 12 to 14 days after the first dose. The benefits of protocol change are attenuated should vaccine compliance decrease substantially. To quantify the impact of protocol change on vaccination adherence we performed a large-scale online survey. We find that, in Germany, changing vaccination protocols may lead to small reductions in vaccination intention. In sum, we therefore expect the benefits of a strategy change to remain substantial and stable.
India has been hit by a huge second wave of Covid-19 that started in mid-February 2021. Mumbai was amongst the first cities to see the increase. In this report, we use our agent based simulator to computationally study the second wave in Mumbai. We build upon our earlier analysis, where projections were made from November 2020 onwards. We use our simulator to conduct an extensive scenario analysis - we play out many plausible scenarios through varying economic activity, reinfection levels, population compliance, infectiveness, prevalence and lethality of the possible variant strains, and infection spread via local trains to arrive at those that may better explain the second wave fatality numbers. We observe and highlight that timings of peak and valley of the fatalities in the second wave are robust to many plausible scenarios, suggesting that they are likely to be accurate projections for Mumbai. During the second wave, the observed fatalities were low in February and mid-March and saw a phase change or a steep increase in the growth rate after around late March. We conduct extensive experiments to replicate this observed sharp convexity. This is not an easy phenomena to replicate, and we find that explanations such as increased laxity in the population, increased reinfections, increased intensity of infections in Mumbai transportation, increased lethality in the virus, or a combination amongst them, generally do a poor job of matching this pattern. We find that the most likely explanation is presence of small amount of extremely infective variant on February 1 that grows rapidly thereafter and becomes a dominant strain by Mid-March. From a prescriptive view, this points to an urgent need for extensive and continuous genome sequencing to establish existence and prevalence of different virus strains in Mumbai and in India, as they evolve over time.
Several analytical models have been used in this work to describe the evolution of death cases arising from coronavirus (COVID-19). The Death or `D model is a simplified version of the SIR (susceptible-infected-recovered) model, which assumes no recovery over time, and allows for the transmission-dynamics equations to be solved analytically. The D-model can be extended to describe various focuses of infection, which may account for the original pandemic (D1), the lockdown (D2) and other effects (Dn). The evolution of the COVID-19 pandemic in several countries (China, Spain, Italy, France, UK, Iran, USA and Germany) shows a similar behavior in concord with the D-model trend, characterized by a rapid increase of death cases followed by a slow decline, which are affected by the earliness and efficiency of the lockdown effect. These results are in agreement with more accurate calculations using the extended SIR model with a parametrized solution and more sophisticated Monte Carlo grid simulations, which predict similar trends and indicate a common evolution of the pandemic with universal parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا