No Arabic abstract
OBJECTIVES: to describe the first wave of the COVID-19 pandemic with a focus on undetected cases and to evaluate different post-lockdown scenarios. DESIGN: the study introduces a SEIR compartmental model, taking into account the region-specific fraction of undetected cases, the effects of mobility restrictions, and the personal protective measures adopted, such as wearing a mask and washing hands frequently. SETTING AND PARTICIPANTS: the model is experimentally validated with data of all the Italian regions, some European countries, and the US. MAIN OUTCOME MEASURES: the accuracy of the model results is measured through the mean absolute percentage error (MAPE) and Lewis criteria; fitting parameters are in good agreement with previous literature. RESULTS: the epidemic curves for different countries and the amount of undetected and asymptomatic cases are estimated, which are likely to represent the main source of infections in the near future. The model is applied to the Hubei case study, which is the first place to relax mobility restrictions. Results show different possible scenarios. Mobility and the adoption of personal protective measures greatly influence the dynamics of the infection, determining either a huge and rapid secondary epidemic peak or a more delayed and manageable one. CONCLUSIONS: mathematical models can provide useful insights for healthcare decision makers to determine the best strategy in case of future outbreaks.
COVID-19 has forced quarantine measures in several countries across the world. These measures have proven to be effective in significantly reducing the prevalence of the virus. To date, no effective treatment or vaccine is available. In the effort of preserving both public health as well as the economical and social textures, France and Italy governments have partially released lockdown measures. Here we extrapolate the long-term behavior of the epidemics in both countries using a Susceptible-Exposed-Infected-Recovered (SEIR) model where parameters are stochastically perturbed to handle the uncertainty in the estimates of COVID-19 prevalence. Our results suggest that uncertainties in both parameters and initial conditions rapidly propagate in the model and can result in different outcomes of the epidemics leading or not to a second wave of infections. Using actual knowledge, asymptotic estimates of COVID-19 prevalence can fluctuate of order of ten millions units in both countries.
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic threatens the health of humans and causes great economic losses. Predictive modelling and forecasting the epidemic trends are essential for developing countermeasures to mitigate this pandemic. We develop a network model, where each node represents an individual and the edges represent contacts between individuals where the infection can spread. The individuals are classified based on the number of contacts they have each day (their node degrees) and their infection status. The transmission network model was respectively fitted to the reported data for the COVID-19 epidemic in Wuhan (China), Toronto (Canada), and the Italian Republic using a Markov Chain Monte Carlo (MCMC) optimization algorithm. Our model fits all three regions well with narrow confidence intervals and could be adapted to simulate other megacities or regions. The model projections on the role of containment strategies can help inform public health authorities to plan control measures.
In late December 2019, a novel strand of Coronavirus (SARS-CoV-2) causing a severe, potentially fatal respiratory syndrome (COVID-19) was identified in Wuhan, Hubei Province, China and is causing outbreaks in multiple world countries, soon becoming a pandemic. Italy has now become the most hit country outside of Asia: on March 16, 2020, the Italian Civil Protection documented a total of 27980 confirmed cases and 2158 deaths of people tested positive for SARS-CoV-2. In the context of an emerging infectious disease outbreak, it is of paramount importance to predict the trend of the epidemic in order to plan an effective control strategy and to determine its impact. This paper proposes a new epidemic model that discriminates between infected individuals depending on whether they have been diagnosed and on the severity of their symptoms. The distinction between diagnosed and non-diagnosed is important because non-diagnosed individuals are more likely to spread the infection than diagnosed ones, since the latter are typically isolated, and can explain misperceptions of the case fatality rate and of the seriousness of the epidemic phenomenon. Being able to predict the amount of patients that will develop life-threatening symptoms is important since the disease frequently requires hospitalisation (and even Intensive Care Unit admission) and challenges the healthcare system capacity. We show how the basic reproduction number can be redefined in the new framework, thus capturing the potential for epidemic containment. Simulation results are compared with real data on the COVID-19 epidemic in Italy, to show the validity of the model and compare different possible predicted scenarios depending on the adopted countermeasures.
In this paper, we deal with the study of the impact of nationwide measures COVID-19 anti-pandemic. We drive two processes to analyze COVID-19 data considering measures. We associate level of nationwide measure with value of parameters related to the contact rate of the model. Then a parametric solve, with respect to those parameters of measures, shows different possibilities of the evolution of the pandemic. Two machine learning tools are used to forecast the evolution of the pandemic. Finally, we show comparison between deterministic and two machine learning tools.
The unprecedented coronavirus disease 2019 (COVID-19) pandemic is still a worldwide threat to human life since its invasion into the daily lives of the public in the first several months of 2020. Predicting the size of confirmed cases is important for countries and communities to make proper prevention and control policies so as to effectively curb the spread of COVID-19. Different from the 2003 SARS epidemic and the worldwide 2009 H1N1 influenza pandemic, COVID-19 has unique epidemiological characteristics in its infectious and recovered compartments. This drives us to formulate a new infectious dynamic model for forecasting the COVID-19 pandemic within the human mobility network, named the SaucIR-model in the sense that the new compartmental model extends the benchmark SIR model by dividing the flow of people in the infected state into asymptomatic, pathologically infected but unconfirmed, and confirmed. Furthermore, we employ dynamic modeling of population flow in the model in order that spatial effects can be incorporated effectively. We forecast the spread of accumulated confirmed cases in some provinces of mainland China and other countries that experienced severe infection during the time period from late February to early May 2020. The novelty of incorporating the geographic spread of the pandemic leads to a surprisingly good agreement with published confirmed case reports. The numerical analysis validates the high degree of predictability of our proposed SaucIR model compared to existing resemblance. The proposed forecasting SaucIR model is implemented in Python. A web-based application is also developed by Dash (under construction).