Do you want to publish a course? Click here

Materials loss measurements using superconducting microwave resonators

92   0   0.0 ( 0 )
 Added by Corey Rae McRae
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The performance of superconducting circuits for quantum computing is limited by materials losses. In particular, coherence times are typically bounded by two-level system (TLS) losses at single photon powers and millikelvin temperatures. The identification of low loss fabrication techniques, materials, and thin film dielectrics is critical to achieving scalable architectures for superconducting quantum computing. Superconducting microwave resonators provide a convenient qubit proxy for assessing performance and studying TLS loss and other mechanisms relevant to superconducting circuits such as non-equilibrium quasiparticles and magnetic flux vortices. In this review article, we provide an overview of considerations for designing accurate resonator experiments to characterize loss, including applicable types of loss, cryogenic setup, device design, and methods for extracting material and interface losses, summarizing techniques that have been evolving for over two decades. Results from measurements of a wide variety of materials and processes are also summarized. Lastly, we present recommendations for the reporting of loss data from superconducting microwave resonators to facilitate materials comparisons across the field.

rate research

Read More

The investigation of two-level-state (TLS) loss in dielectric materials and interfaces remains at the forefront of materials research in superconducting quantum circuits. We demonstrate a method of TLS loss extraction of a thin film dielectric by measuring a lumped element resonator fabricated from a superconductor-dielectric-superconductor trilayer. We extract the dielectric loss by formulating a circuit model for a lumped element resonator with TLS loss and then fitting to this model using measurements from a set of three resonator designs: a coplanar waveguide resonator, a lumped element resonator with an interdigitated capacitor, and a lumped element resonator with a parallel plate capacitor that includes the dielectric thin film of interest. Unlike other methods, this allows accurate measurement of materials with TLS loss lower than $10^{-6}$. We demonstrate this method by extracting a TLS loss of $1.02 times 10^{-3}$ for sputtered $mathrm{Al_2O_3}$ using a set of samples fabricated from an $mathrm{Al/Al_2O_3/Al}$ trilayer. We observe a difference of 11$%$ between extracted loss of the trilayer with and without the implementation of this method.
Epitaxially-grown superconductor/dielectric/superconductor trilayers have the potential to form high-performance superconducting quantum devices and may even allow scalable superconducting quantum computing with low-surface-area qubits such as the merged-element transmon. In this work, we measure the power-independent loss and two-level-state (TLS) loss of epitaxial, wafer-bonded, and substrate-removed Al/GaAs/Al trilayers by measuring lumped element superconducting microwave resonators at millikelvin temperatures and down to single photon powers. The power-independent loss of the device is $(4.8 pm 0.1) times 10^{-5}$ and resonator-induced intrinsic TLS loss is $(6.4 pm 0.2) times 10^{-5}$. Dielectric loss extraction is used to determine a lower bound of the intrinsic TLS loss of the trilayer of $7.2 times 10^{-5}$. The unusually high power-independent loss is attributed to GaAss intrinsic piezoelectricity.
Silicon-Germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to eletro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 $mu$s, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state of the art performance of superconducting quantum circuits.
We perform an experimental and numerical study of dielectric loss in superconducting microwave resonators at low temperature. Dielectric loss, due to two-level systems, is a limiting factor in several applications, e.g. superconducting qubits, Josephson parametric amplifiers, microwave kinetic-inductance detectors, and superconducting single-photon detectors. Our devices are made of disordered NbN, which, due to magnetic-field penetration, necessitates 3D finite-element simulation of the Maxwell--London equations at microwave frequencies to accurately model the current density and electric field distribution. From the field distribution, we compute the geometric filling factors of the lossy regions in our resonator structures and fit the experimental data to determine the intrinsic loss tangents of its interfaces and dielectrics. We emphasise that the loss caused by a spin-on-glass resist such as hydrogen silsesquioxane (HSQ), used for ultrahigh lithographic resolution relevant to the fabrication of nanowires, and find that, when used, HSQ is the dominant source of loss, with a loss tangent of $delta^i_{HSQ} = 8 times 10^{-3}$.
Microwave reflectance probed photoconductivity (or $mu$-PCD) measurement represents a contactless and non-invasive method to characterize impurity content in semiconductors. Major drawbacks of the method include a difficult separation of reflectance due to dielectric and conduction effects and that the $mu$-PCD signal is prohibitively weak for highly conducting samples. Both of these limitations could be tackled with the use of microwave resonators due to the well-known sensitivity of resonator parameters to minute changes in the material properties combined with a null measurement. A general misconception is that time resolution of resonator measurements is limited beyond their bandwidth by the readout electronics response time. While it is true for conventional resonator measurements, such as those employing a frequency sweep, we present a time-resolved resonator parameter readout method which overcomes these limitations and allows measurement of complex material parameters and to enhance $mu$-PCD signals with the ultimate time resolution limit being the resonator time constant. This is achieved by detecting the transient response of microwave resonators on the timescale of a few 100 ns emph{during} the $mu$-PCD decay signal. The method employs a high-stability oscillator working with a fixed frequency which results in a stable and highly accurate measurement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا