No Arabic abstract
The synchronization of charge oscillations after photoexcitation that has been realized through the emergence of an electronic breathing mode on dimer lattices is studied here from the viewpoint of the competition between interactions and randomness. We employ an extended Hubbard model at three-quarter filling on a simple dimer lattice and add random numbers to all transfer integrals between nearest-neighbor sites. Photoinduced dynamics are calculated using the time-dependent Schrodinger equation by the exact diagonalization method. Although the randomness tends to unsynchronize charge oscillations on different bonds during and after photoexcitation, sufficiently strong on-site repulsion $U$ overcomes this effect and synchronizes these charge oscillations some time after strong photoexcitation. The degree of synchronization is evaluated using an order parameter that is derived from the time profiles of the current densities on all bonds. As to the nearest-neighbor interaction $V$, if $V$ is weakly attractive, it increases the order parameter by facilitating the charge oscillations. The relevance of these findings to previously reported experimental and theoretical results for the organic conductor $kappa$-(bis[ethylenedithio]tetrathiafulvalene)$_2$Cu[N(CN)$_2$]Br is discussed.
We discuss the mechanism and the conditions for the appearance of synchronized charge oscillations which have been observed experimentally and theoretically after strong photoexcitation of dimerized systems. In the Hubbard model with on-site repulsion, the Bloch equations for a wave-number-dependent pseudospin -- whose components describe the charge-density difference, current density, and bond density between the two sublattices -- involve an alternatingly tilted pseudomagnetic field, which assists the synchronization of pseudospins with different wave numbers, irrespective of the initial condition. This fact is numerically confirmed by the dynamics in finite lattices based on the exact diagonalization method. In the presence of nearest-neighbor repulsion, however, the synchronization can be hindered by excitons. Therefore, the excitation of a sufficiently large density of free electron-hole pairs, but low density of excitons, is needed to achieve synchronization.
Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrodinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for $kappa$-(bis[ethylenedithio]tetrathiafulvalene)$_2$X [$kappa$-(BEDT-TTF)$_2$X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in $kappa$-(BEDT-TTF)$_2$X after photoexcitation is discussed.
The Holstein Model (HM) describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits, but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature $T_{rm cdw}$ for CDW order, and also uncover several novel features of diagonal long range order in the phase diagram, including a competition between charge patterns at momenta ${bf q}=(pi,pi)$ and ${bf q}=(0,pi)$ which lends insight into the relationship between Fermi surface nesting and the wavevector at which charge order occurs. We also demonstrate SC order at half-filling in situations where nonzero bandwidth sufficiently suppresses $T_{rm cdw}$.
Naturally occuring or man-made systems displaying periodic spatial modulations of their properties on a nanoscale constitute superlattices. Such modulated structures are important both as prototypes of simple nanotechnological devices and as particular examples of emerging spatial inhomogeneity in interacting many-electron systems. Here we investigate the effect different types of modulation of the system parameters have on the ground-state energy and the charge-density distribution of the system. The superlattices are described by the inhomogeneous attractive Hubbard model, and the calculations are performed by density-functional and density-matrix renormalization group techniques. We find that modulations in local electric potentials are much more effective in shaping the systems properties than modulations in the attractive on-site interaction. This is the same conclusions we previously (Phys. Rev. B 71, 125130) obtained for repulsive interactions, suggesting that it is not an artifact of a specific state, but a general property of modulated structures.
The EPR spectra along different crystallographic axes for single crystals of CuGeO3 containing 1% of Fe impurity have been studied in the frequency range 60-360 GHz at temperatures 0.5-30 K. The analysis based on the Oshikawa-Affleck (OA) theory suggests that the temperature dependences of the line width and g-factor are formed as a result of the competition between interchain antiferromagnetic interactions and staggered Zeeman energy. It is found that staggered magnetic moments in CuGeO3:Fe are located predominantly along b axis.