Do you want to publish a course? Click here

Phonon dispersion and the competition between pairing and charge order

85   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Holstein Model (HM) describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits, but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature $T_{rm cdw}$ for CDW order, and also uncover several novel features of diagonal long range order in the phase diagram, including a competition between charge patterns at momenta ${bf q}=(pi,pi)$ and ${bf q}=(0,pi)$ which lends insight into the relationship between Fermi surface nesting and the wavevector at which charge order occurs. We also demonstrate SC order at half-filling in situations where nonzero bandwidth sufficiently suppresses $T_{rm cdw}$.



rate research

Read More

58 - Y. Saiga , M. Imada 2001
The ground-state phase diagram is numerically studied for an electronic model consisting of the spin exchange term (J) and the correlated hopping term (t_3: the three-site term). This model has no single-particle hopping and the ratio of the two terms is controlled by a parameter alpha equiv 4 t_3 / J. The case of alpha=1 corresponds to complete suppression of single-particle hopping in the strong-coupling limit of the Hubbard model. In one dimension, phase separation takes place below a critical value alpha_c = 0.36-0.63 which depends on the electron density. Spin gap opens in the whole region except the phase-separated one. For alpha gsim 1.2 and low hole densities, charge-density-wave correlations are the most dominant, whereas singlet-pairing correlations are the most dominant in the remaining region. The possibility of superconductivity in the two-dimensional case is also discussed, based on equal-time pairing correlations.
Electron pairing and ferromagnetism in various cluster geometries are studied with emphasis on tetrahedron and square pyramid under variation of interaction strength, electron doping and temperature. These exact calculations of charge and spin collective excitations and pseudogaps yield intriguing insights into level crossing degeneracies, phase separation and condensation. Criteria for spin-charge separation and reconciliation driven by interaction strength, next nearest coupling and temperature are found. Phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases seen recently in high T$_c$ cuprates, manganites and CMR nanomaterials.
Motivated by recent experimental progress on iron-based ladder compounds, we study the doped two-orbital Hubbard model for the two-leg ladder BaFe$_2$S$_3$. The model is constructed by using {it ab initio} hopping parameters and the ground state properties are investigated using the density matrix renormalization group method. We show that the $(pi,0)$ magnetic ordering at half-filling, with ferromagnetic rungs and antiferromagnetic legs, becomes incommensurate upon hole doping. Moreover, depending on the strength of the Hubbard $U$ coupling, other magnetic patterns, such as $(0,pi)$, are also stabilized. We found that the binding energy for two holes becomes negative for intermediate Hubbard interaction strength, indicating hole pairing. Due to the crystal-field split among orbitals, the holes primarily reside in one orbital, with the other one remaining half-filled. This resembles orbital selective Mott states. The formation of tight hole pairs continues with increasing hole density, as long as the magnetic order remains antiferromagnetic in one direction. The study of pair-pair correlations indicates the dominance of the intra-orbital spin-singlet channel, as opposed to other pairing channels. Although in a range of hole doping pairing correlations decay slowly, our results can also be interpreted as corresponding to a charge-density-wave made of pairs, a precursor of eventual superconductivity after interladder couplings are included. Such scenario of intertwined orders has been extensively discussed before in the cuprates, and our results suggest a similar physics could exist in ladder iron-based superconductors. Finally, we also show that a robust Hunds coupling is needed for pairing to occur.
A two-orbital model for Fe-pnictide superconductors is investigated using computational techniques on two-dimensional square clusters. The hopping amplitudes are derived from orbital overlap integrals, or by band structure fits, and the spin frustrating effect of the plaquette-diagonal Fe-Fe hopping is remarked. A spin striped state is stable in a broad range of couplings in the undoped regime, in agreement with neutron scattering. Adding two electrons to the undoped ground state of a small cluster, the dominant pairing operators are found. Depending on parameters, two pairing operators were identified: they involve inter-xz-yz orbital combinations forming spin singlets or triplets, transforming according to the B_2g and A_2g representations of the D_4h group, respectively.
We analyze the stability of excitonic ground states in the two-band Hubbard model with additional electron-phonon and Hunds rule couplings using a combination of mean-field and variational cluster approaches. We show that both the interband Coulomb interaction and the electron-phonon interaction will cooperatively stabilize a charge density wave (CDW) state which typifies an excitonic CDW if predominantly triggered by the effective interorbital electron-hole attraction or a phononic CDW if mostly caused by the coupling to the lattice degrees of freedom. By contrast, the Hunds rule coupling promotes an excitonic spin density wave. We determine the transition between excitonic charge and spin density waves and comment on a fixation of the phase of the excitonic order parameter that would prevent the formation of a superfluid condensate of excitons. The implications for exciton condensation in several material classes with strongly correlated electrons are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا