Do you want to publish a course? Click here

Combinatorics of injective words for Temperley-Lieb algebras

292   0   0.0 ( 0 )
 Added by Rachael Boyd
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This paper studies combinatorial properties of the complex of planar injective words, a chain complex of modules over the Temperley-Lieb algebra that arose in our work on homological stability. Despite being a linear rather than a discrete object, our chain complex nevertheless exhibits interesting combinatorial properties. We show that the Euler characteristic of this complex is the n-th Fine number. We obtain an alternating sum formula for the representation given by its top-dimensional homology module and, under further restrictions on the ground ring, we decompose this module in terms of certain standard Young tableaux. This trio of results - inspired by results of Reiner and Webb for the complex of injective words - can be viewed as an interpretation of the n-th Fine number as the planar or Dyck path analogue of the number of derangements of n letters. This interpretation has precursors in the literature, but here emerges naturally from considerations in homological stability. Our final result shows a surprising connection between the boundary maps of our complex and the Jacobsthal numbers.



rate research

Read More

This paper studies the homology and cohomology of the Temperley-Lieb algebra TL_n(a), interpreted as appropriate Tor and Ext groups. Our main result applies under the common assumption that a=v+v^{-1} for some unit v in the ground ring, and states that the homology and cohomology vanish up to and including degree (n-2). To achieve this we simultaneously prove homological stability and compute the stable homology. We show that our vanishing range is sharp when n is even. Our methods are inspired by the tools and techniques of homological stability for families of groups. We construct and exploit a chain complex of planar injective words that is analogous to the complex of injective words used to prove stability for the symmetric groups. However, in this algebraic setting we encounter a novel difficulty: TL_n(a) is not flat over TL_m(a) for m<n, so that Shapiros lemma is unavailable. We resolve this difficulty by constructing what we call inductive resolutions of the relevant modules. Vanishing results for the homology and cohomology of Temperley-Lieb algebras can also be obtained from existence of the Jones-Wenzl projector. Our own vanishing results are in general far stronger than these, but in a restricted case we are able to obtain additional vanishing results via existence of the Jones-Wenzl projector. We believe that these results, together with the second authors work on Iwahori-Hecke algebras, are the first time the techniques of homological stability have been applied to algebras that are not group algebras.
The Temperley--Lieb algebra is a finite dimensional associative algebra that arose in the context of statistical mechanics and occurs naturally as a quotient of the Hecke algebra arising from a Coxeter group of type $A$. It is often realized in terms of a certain diagram algebra, where every diagram can be written as a product of simple diagrams. These factorizations correspond precisely to factorizations of the so-called fully commutative elements of the Coxeter group that index a particular basis. Given a reduced factorization of a fully commutative element, it is straightforward to construct the corresponding diagram. On the other hand, it is generally difficult to reconstruct the factorization given an arbitrary diagram. We present an efficient algorithm for obtaining a reduced factorization for a given diagram.
159 - Shoumin Liu 2017
In this paper, we will study the Dieck-Temlerley-Lieb algebras of type Bn and Cn. We compute their ranks and describe a basis for them by using some results from corresponding Brauer algebras and Temperley-Lieb algebras.
An injective word over a finite alphabet $V$ is a sequence $w=v_1v_2cdots v_t$ of distinct elements of $V$. The set $mathrm{inj}(V)$ of injective words on $V$ is partially ordered by inclusion. A complex of injective words is the order complex $Delta(W)$ of a subposet $W subset mathrm{inj}(V)$. Complexes of injective words arose recently in applications of algebraic topology to neuroscience, and are of independent interest in topology and combinatorics. In this article we mainly study Permutation Complexes, i.e. complexes of injective words $Delta(W)$, where $W$ is the downward closed subposet of $mathrm{inj}(V)$ generated by a set of permutations of $V$. In particular, we determine the homotopy type of $Delta(W)$ when $W$ is generated by two permutations, and prove that any stable homotopy type is realizable by a permutation complex. We describe a homotopy decomposition for the complex of injective words $Gamma(K)$ associated with a simplicial complex $K$, and point out a connection to a result of Randal-Williams and Wahl. Finally, we discuss some probabilistic aspects of random permutation complexes.
Principal circle bundle over a PL polyhedron can be triangulated and thus obtains combinatorics. The triangulation is assembled from triangulated circle bundles over simplices. To every triangulated circle bundle over a simplex we associate a necklace (in combinatorial sense). We express rational local formulas for all powers of first Chern class in the terms of mathematical expectations of parities of the associated necklaces. This rational parity is a combinatorial isomorphism invariant of triangulated circle bundle over simplex, measuring mixing by triangulation of the circular graphs over vertices of the simplex. The goal of this note is to sketch the logic of deduction these formulas from Kontsevitchs cyclic invariant connection form on metric polygons.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا