No Arabic abstract
Communication is crucial when disasters isolate communities of people and rescue is delayed. Such delays force citizens to be first responders and form small rescue teams. Rescue teams require reliable communication, particularly in the first 72 hours, which is challenging due to damaged infrastructure and electrical blackouts. We design a peer-to-peer communication network that meets these challenges. We introduce the concept of participatory fairness: equal communication opportunities for all citizens regardless of initial inequality in phone battery charge. Our value-sensitive design approach achieves an even battery charge distribution across phones over time and enables citizens to communicate over 72 hours. We apply the fairness principle to communication in an adapted standard Barabasi-Albert model of a scale-free network that automatically (i) assigns high-battery phones as hubs, (ii) adapts the network topology to the spatio-temporal battery charge distribution, and (iii) self-organizes to remain robust and reliable when links fail or phones leave the network. While the Barabasi-Albert model has become a widespread descriptive model, we demonstrate its use as a design principle to meet values such as fairness and systemic efficiency. Our results demonstrate that, compared to a generic peer-to-peer mesh network, the new protocol achieves (i) a longer network lifetime, (ii) an adaptive information flow, (iii) a fair distribution of battery charge, and (iv) higher participation rates. Hence, our protocol, Self-Organization for Survival (SOS), provides fair communication opportunities to all citizens during a disaster through self-organization. SOS enables participatory resilience and sustainability, empowering citizens to communicate when they need it most.
This paper introduces a model of self-organization between communication and topology in social networks, with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, a global loss is inevitable in a system with too many liars
As networks and their structure have become a major field of research, a strong demand for network visualization has emerged. We address this challenge by formalizing the well established spring layout in terms of dynamic equations. We thus open up the design space for new algorithms. Drawing from the knowledge of systems design, we derive a layout algorithm that remedies several drawbacks of the original spring layout. This new algorithm relies on the balancing of two antagonistic forces. We thus call it {em arf} for attractive and repulsive forces. It is, as we claim, particularly suited for a dynamic layout of smaller networks ($n < 10^3$). We back this claim with several application examples from on going complex systems research.
In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we first review the basic ideas behind fractal theory and SOC. We then briefly review some results in the field of complex networks, and some of the models that have been proposed. Finally, we present a self-organized model recently proposed by Garlaschelli et al. [Nat. Phys. 3, 813 (2007)] that couples the fitness network model defined by Caldarelli et al. [Phys. Rev. Lett. 89, 258702 (2002)] with the evolution model proposed by Bak and Sneppen [Phys. Rev. Lett. 71, 4083 (1993)] as a prototype of SOC. Remarkably, we show that the results obtained for the two models separately change dramatically when they are coupled together. This indicates that self-organized networks may represent an entirely novel class of complex systems, whose properties cannot be straightforwardly understood in terms of what we have learnt so far.
Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic equations, we show that resource-limited length regulation drives the formation of filament clusters despite the absence of mechanical interactions between filaments. Even though the orientation of individual remains fixed, collective filament orientation emerges in the clusters, aligned orthogonal to their interfaces.
Good communication is essential within teams dealing with emergency situations. In this paper we look at communications within a resuscitation team performing cardio-pulmonary resuscitation. Communication underpins efficient collaboration, joint coordination of work, and helps to construct a mutual awareness of the situation. Poor communication wastes valuable time and can ultimately lead to life-threatening mistakes. Although training sessions frequently focus on medical knowledge and procedures, soft skills, such as communication receive less attention. This paper analyses communication problems in the case of CPR and proposes an architecture that merges a situation awareness model and the belief-desire-intention (BDI) approach in multi-agent systems. The architecture forms the basis of an agent-based simulator used to assess communication protocols in CPR teams.