Do you want to publish a course? Click here

Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue

68   0   0.0 ( 0 )
 Added by Jiawang Bian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Single-view depth estimation using CNNs trained from unlabelled videos has shown significant promise. However, the excellent results have mostly been obtained in street-scene driving scenarios, and such methods often fail in other settings, particularly indoor videos taken by handheld devices, in which case the ego-motion is often degenerate, i.e., the rotation dominates the translation. In this work, we establish that the degenerate camera motions exhibited in handheld settings are a critical obstacle for unsupervised depth learning. A main contribution of our work is fundamental analysis which shows that the rotation behaves as noise during training, as opposed to the translation (baseline) which provides supervision signals. To capitalise on our findings, we propose a novel data pre-processing method for effective training, i.e., we search for image pairs with modest translation and remove their rotation via the proposed weak image rectification. With our pre-processing, existing unsupervised models can be trained well in challenging scenarios (e.g., NYUv2 dataset), and the results outperform the unsupervised SOTA by a large margin (0.147 vs. 0.189 in the AbsRel error).



rate research

Read More

We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training and enables the scale-consistent prediction at inference time. Our contributions include: (i) we propose a geometry consistency loss, which penalizes the inconsistency of predicted depths between adjacent views; (ii) we propose a self-discovered mask to automatically localize moving objects that violate the underlying static scene assumption and cause noisy signals during training; (iii) we demonstrate the efficacy of each component with a detailed ablation study and show high-quality depth estimation results in both KITTI and NYUv2 datasets. Moreover, thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system for more robust and accurate tracking. The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training. Finally, we provide several demos for qualitative evaluation.
We present a novel algorithm for self-supervised monocular depth completion. Our approach is based on training a neural network that requires only sparse depth measurements and corresponding monocular video sequences without dense depth labels. Our self-supervised algorithm is designed for challenging indoor environments with textureless regions, glossy and transparent surface, non-Lambertian surfaces, moving people, longer and diverse depth ranges and scenes captured by complex ego-motions. Our novel architecture leverages both deep stacks of sparse convolution blocks to extract sparse depth features and pixel-adaptive convolutions to fuse image and depth features. We compare with existing approaches in NYUv2, KITTI, and NAVERLABS indoor datasets, and observe 5-34 % improvements in root-means-square error (RMSE) reduction.
Depth estimation, as a necessary clue to convert 2D images into the 3D space, has been applied in many machine vision areas. However, to achieve an entire surrounding 360-degree geometric sensing, traditional stereo matching algorithms for depth estimation are limited due to large noise, low accuracy, and strict requirements for multi-camera calibration. In this work, for a unified surrounding perception, we introduce panoramic images to obtain larger field of view. We extend PADENet first appeared in our previous conference work for outdoor scene understanding, to perform panoramic monocular depth estimation with a focus for indoor scenes. At the same time, we improve the training process of the neural network adapted to the characteristics of panoramic images. In addition, we fuse traditional stereo matching algorithm with deep learning methods and further improve the accuracy of depth predictions. With a comprehensive variety of experiments, this research demonstrates the effectiveness of our schemes aiming for indoor scene perception.
In this paper, we tackle the problem of estimating the depth of a scene from a monocular video sequence. In particular, we handle challenging scenarios, such as non-translational camera motion and dynamic scenes, where traditional structure from motion and motion stereo methods do not apply. To this end, we first study the problem of depth estimation from a single image. In this context, we exploit the availability of a pool of images for which the depth is known, and formulate monocular depth estimation as a discrete-continuous optimization problem, where the continuous variables encode the depth of the superpixels in the input image, and the discrete ones represent relationships between neighboring superpixels. The solution to this discrete-continuous optimization problem is obtained by performing inference in a graphical model using particle belief propagation. To handle video sequences, we then extend our single image model to a two-frame one that naturally encodes short-range temporal consistency and inherently handles dynamic objects. Based on the prediction of this model, we then introduce a fully-connected pairwise CRF that accounts for longer range spatio-temporal interactions throughout a video. We demonstrate the effectiveness of our model in both the indoor and outdoor scenarios.
Recent work has shown that CNN-based depth and ego-motion estimators can be learned using unlabelled monocular videos. However, the performance is limited by unidentified moving objects that violate the underlying static scene assumption in geometric image reconstruction. More significantly, due to lack of proper constraints, networks output scale-inconsistent results over different samples, i.e., the ego-motion network cannot provide full camera trajectories over a long video sequence because of the per-frame scale ambiguity. This paper tackles these challenges by proposing a geometry consistency loss for scale-consistent predictions and an induced self-discovered mask for handling moving objects and occlusions. Since we do not leverage multi-task learning like recent works, our framework is much simpler and more efficient. Comprehensive evaluation results demonstrate that our depth estimator achieves the state-of-the-art performance on the KITTI dataset. Moreover, we show that our ego-motion network is able to predict a globally scale-consistent camera trajectory for long video sequences, and the resulting visual odometry accuracy is competitive with the recent model that is trained using stereo videos. To the best of our knowledge, this is the first work to show that deep networks trained using unlabelled monocular videos can predict globally scale-consistent camera trajectories over a long video sequence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا