Do you want to publish a course? Click here

Homogenization of the wave equation with non-uniformly oscillating coefficients

47   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The focus of our work is dispersive, second-order effective model describing the low-frequency wave motion in heterogeneous (e.g.~functionally-graded) media endowed with periodic microstructure. For this class of quasi-periodic medium variations, we pursue homogenization of the scalar wave equation in $mathbb{R}^d$, $dgeqslant 1$ within the framework of multiple scales expansion. When either $d=1$ or $d=2$, this model problem bears direct relevance to the description of (anti-plane) shear waves in elastic solids. By adopting the lengthscale of microscopic medium fluctuations as the perturbation parameter, we synthesize the germane low-frequency behavior via a fourth-order differential equation (with smoothly varying coefficients) governing the mean wave motion in the medium, where the effect of microscopic heterogeneities is upscaled by way of the so-called cell functions. In an effort to demonstrate the relevance of our analysis toward solving boundary value problems (deemed to be the ultimate goal of most homogenization studies), we also develop effective boundary conditions, up to the second order of asymptotic approximation, applicable to one-dimensional (1D) shear wave motion in a macroscopically heterogeneous solid with periodic microstructure. We illustrate the analysis numerically in 1D by considering (i) low-frequency wave dispersion, (ii) mean-field homogenized description of the shear waves propagating in a finite domain, and (iii) full-field homogenized description thereof. In contrast to (i) where the overall wave dispersion appears to be fairly well described by the leading-order model, the results in (ii) and (iii) demonstrate the critical role that higher-order corrections may have in approximating the actual waveforms in quasi-periodic media.



rate research

Read More

74 - Daniel Ruprecht 2017
The paper derives and analyses the (semi-)discrete dispersion relation of the Parareal parallel-in-time integration method. It investigates Parareals wave propagation characteristics with the aim to better understand what causes the well documented stability problems for hyperbolic equations. The analysis shows that the instability is caused by convergence of the amplification factor to the exact value from above for medium to high wave numbers. Phase errors in the coarse propagator are identified as the culprit, which suggests that specifically tailored coarse level methods could provide a remedy.
59 - Li Lin , Jinqiao Duan 2021
This letter deals with homogenization of a nonlocal model with Levy-type operator of rapidly oscillating coefficients. This nonlocal model describes mean residence time and other escape phenomena for stochastic dynamical systems with non-Gaussian Levy noise. We derive an effective model with a specific convergence rate. This enables efficient analysis and simulation of escape phenomena under non-Gaussian fluctuations.
A high-order quasi-conservative discontinuous Galerkin (DG) method is proposed for the numerical simulation of compressible multi-component flows. A distinct feature of the method is a predictor-corrector strategy to define the grid velocity. A Lagrangian mesh is first computed based on the flow velocity and then used as an initial mesh in a moving mesh method (the moving mesh partial differential equation or MMPDE method ) to improve its quality. The fluid dynamic equations are discretized in the direct arbitrary Lagrangian-Eulerian framework using DG elements and the non-oscillatory kinetic flux while the species equation is discretized using a quasi-conservative DG scheme to avoid numerical oscillations near material interfaces. A selection of one- and two-dimensional examples are presented to verify the convergence order and the constant-pressure-velocity preservation property of the method. They also demonstrate that the incorporation of the Lagrangian meshing with the MMPDE moving mesh method works well to concentrate mesh points in regions of shocks and material interfaces.
In this article, a new unified duality theory is developed for Petrov-Galerkin finite element methods. This novel theory is then used to motivate goal-oriented adaptive mesh refinement strategies for use with discontinuous Petrov-Galerkin (DPG) methods. The focus of this article is mainly on broken ultraweak variational formulations of stationary boundary value problems, however, many of the ideas presented within are general enough that they be extended to any such well-posed variational formulation. The proposed goal-oriented adaptive mesh refinement procedures require the construction of refinement indicators for both a primal problem and a dual problem. In the DPG context, the primal problem is simply the system of linear equations coming from a standard DPG method and the dual problem is a similar system of equations, coming from a new method which is dual to DPG. This new method has the same coefficient matrix as the associated DPG method but has a different load. We refer to this new finite element method as a DPG* method. A thorough analysis of DPG* methods, as stand-alone finite element methods, is not given here but will be provided in subsequent articles. For DPG methods, the current theory of a posteriori error estimation is reviewed and the reliability estimate in [13, Theorem 2.1] is improved on. For DPG* methods, three different classes of refinement indicators are derived and several contributions are made towards rigorous a posteriori error estimation. At the closure of the article, results of numerical experiments with Poissons boundary value problem in a three-dimensional domain are provided. These results clearly demonstrate the utility of the goal-oriented adaptive mesh refinement strategies for quantities of interest with either interior or boundary terms.
Partial differential equation-based numerical solution frameworks for initial and boundary value problems have attained a high degree of complexity. Applied to a wide range of physics with the ultimate goal of enabling engineering solutions, these approaches encompass a spectrum of spatiotemporal discretization techniques that leverage solver technology and high performance computing. While high-fidelity solutions can be achieved using these approaches, they come at a high computational expense and complexity. Systems with billions of solution unknowns are now routine. The expense and complexity do not lend themselves to typical engineering design and decision-making, which must instead rely on reduced-order models. Here we present an approach to reduced-order modelling that builds off of recent graph theoretic work for representation, exploration, and analysis on computed states of physical systems (Banerjee et al., Comp. Meth. App. Mech. Eng., 351, 501-530, 2019). We extend a non-local calculus on finite weighted graphs to build such models by exploiting first order dynamics, polynomial expansions, and Taylor series. Some aspects of the non-local calculus related to consistency of the models are explored. Details on the numerical implementations and the software library that has been developed for non-local calculus on graphs are described. Finally, we present examples of applications to various quantities of interest in mechano-chemical systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا