Do you want to publish a course? Click here

Wave propagation characteristics of Parareal

75   0   0.0 ( 0 )
 Added by Daniel Ruprecht
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The paper derives and analyses the (semi-)discrete dispersion relation of the Parareal parallel-in-time integration method. It investigates Parareals wave propagation characteristics with the aim to better understand what causes the well documented stability problems for hyperbolic equations. The analysis shows that the instability is caused by convergence of the amplification factor to the exact value from above for medium to high wave numbers. Phase errors in the coarse propagator are identified as the culprit, which suggests that specifically tailored coarse level methods could provide a remedy.



rate research

Read More

We show that for the simulation of crack propagation in quasi-brittle, two-dimensional solids, very good results can be obtained with an embedded strong discontinuity quadrilateral finite element that has incompatible modes. Even more importantly, we demonstrate that these results can be obtained without using a crack tracking algorithm. Therefore, the simulation of crack patterns with several cracks, including branching, becomes possible. The avoidance of a tracking algorithm is mainly enabled by the application of a novel, local (Gauss-point based) criterion for crack nucleation, which determines the time of embedding the localisation line as well as its position and orientation. We treat the crack evolution in terms of a thermodynamical framework, with softening variables describing internal dissipative mechanisms of material degradation. As presented by numerical examples, many elements in the mesh may develop a crack, but only some of them actually open and/or slide, dissipate fracture energy, and eventually form the crack pattern. The novel approach has been implemented for statics and dynamics, and the results of computed difficult examples (including Kalthoffs test) illustrate its very satisfying performance. It effectively overcomes unfavourable restrictions of the standard embedded strong discontinuity formulations, namely the simulation of the propagation of a single crack only. Moreover, it is computationally fast and straightforward to implement. Our numerical solutions match the results of experimental tests and previously reported numerical results in terms of crack pattern, dissipated fracture energy, and load-displacement curve.
The focus of our work is dispersive, second-order effective model describing the low-frequency wave motion in heterogeneous (e.g.~functionally-graded) media endowed with periodic microstructure. For this class of quasi-periodic medium variations, we pursue homogenization of the scalar wave equation in $mathbb{R}^d$, $dgeqslant 1$ within the framework of multiple scales expansion. When either $d=1$ or $d=2$, this model problem bears direct relevance to the description of (anti-plane) shear waves in elastic solids. By adopting the lengthscale of microscopic medium fluctuations as the perturbation parameter, we synthesize the germane low-frequency behavior via a fourth-order differential equation (with smoothly varying coefficients) governing the mean wave motion in the medium, where the effect of microscopic heterogeneities is upscaled by way of the so-called cell functions. In an effort to demonstrate the relevance of our analysis toward solving boundary value problems (deemed to be the ultimate goal of most homogenization studies), we also develop effective boundary conditions, up to the second order of asymptotic approximation, applicable to one-dimensional (1D) shear wave motion in a macroscopically heterogeneous solid with periodic microstructure. We illustrate the analysis numerically in 1D by considering (i) low-frequency wave dispersion, (ii) mean-field homogenized description of the shear waves propagating in a finite domain, and (iii) full-field homogenized description thereof. In contrast to (i) where the overall wave dispersion appears to be fairly well described by the leading-order model, the results in (ii) and (iii) demonstrate the critical role that higher-order corrections may have in approximating the actual waveforms in quasi-periodic media.
A weighted version of the parareal method for parallel-in-time computation of time dependent problems is presented. Linear stability analysis for a scalar weighing strategy shows that the new scheme may enjoy favorable stability properties with marginal reduction in accuracy at worse. More complicated matrix-valued weights are applied in numerical examples. The weights are optimized using information from past iterations, providing a systematic framework for using the parareal iterations as an approach to multiscale coupling. The advantage of the method is demonstrated using numerical examples, including some well-studied nonlinear Hamiltonian systems.
Spatial symmetries and invariances play an important role in the description of materials. When modelling material properties, it is important to be able to respect such invariances. Here we discuss how to model and generate random ensembles of tensors where one wants to be able to prescribe certain classes of spatial symmetries and invariances for the whole ensemble, while at the same time demanding that the mean or expected value of the ensemble be subject to a possibly higher spatial invariance class. Our special interest is in the class of physically symmetric and positive definite tensors, as they appear often in the description of materials. As the set of positive definite tensors is not a linear space, but rather an open convex cone in the linear vector space of physically symmetric tensors, it may be advantageous to widen the notion of mean to the so-called Frechet mean, which is based on distance measures between positive definite tensors other than the usual Euclidean one. For the sake of simplicity, as well as to expose the main idea as clearly as possible, we limit ourselves here to second order tensors. It is shown how the random ensemble can be modelled and generated, with fine control of the spatial symmetry or invariance of the whole ensemble, as well as its Frechet mean, independently in its scaling and directional aspects. As an example, a 2D and a 3D model of steady-state heat conduction in a human proximal femur, a bone with high material anisotropy, is explored. It is modelled with a random thermal conductivity tensor, and the numerical results show the distinct impact of incorporating into the constitutive model different material uncertainties$-$scaling, orientation, and prescribed material symmetry$-$on the desired quantities of interest, such as temperature distribution and heat flux.
Mathematical modelling of ionic electrodiffusion and water movement is emerging as a powerful avenue of investigation to provide new physiological insight into brain homeostasis. However, in order to provide solid answers and resolve controversies, the accuracy of the predictions is essential. Ionic electrodiffusion models typically comprise non-trivial systems of non-linear and highly coupled partial and ordinary differential equations that govern phenomena on disparate time scales. Here, we study numerical challenges related to approximating these systems. We consider a homogenized model for electrodiffusion and osmosis in brain tissue and present and evaluate different associated finite element-based splitting schemes in terms of their numerical properties, including accuracy, convergence, and computational efficiency for both idealized scenarios and for the physiologically relevant setting of cortical spreading depression (CSD). We find that the schemes display optimal convergence rates in space for problems with smooth manufactured solutions. However, the physiological CSD setting is challenging: we find that the accurate computation of CSD wave characteristics (wave speed and wave width) requires a very fine spatial and fine temporal resolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا