Do you want to publish a course? Click here

The non-Abelian X-ray transform on surfaces

104   0   0.0 ( 0 )
 Added by Gabriel Paternain
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This paper settles the question of injectivity of the non-Abelian X-ray transform on simple surfaces for the general linear group of invertible complex matrices. The main idea is to use a factorization theorem for Loop Groups to reduce to the setting of the unitary group, where energy methods and scalar holomorphic integrating factors can be used. We also show that our main theorem extends to cover the case of an arbitrary Lie group.



rate research

Read More

We develop analytical methods for nonlinear Dirac equations. Examples of such equations include Dirac-harmonic maps with curvature term and the equations describing the generalized Weierstrass representation of surfaces in three-manifolds. We provide the key analytical steps, i.e., small energy regularity and removable singularity theorems and energy identities for solutions.
Motivated by the supersymmetric extension of Liouville theory in the recent physics literature, we couple the standard Liouville functional with a spinor field term. The resulting functional is conformally invariant. We study geometric and analytic aspects of the resulting Euler-Lagrange equations, culminating in a blow up analysis.
97 - Rafe Mazzeo , Xuwen Zhu 2019
We continue our study, initiated in our earlier paper, of Riemann surfaces with constant curvature and isolated conic singularities. Using the machinery developed in that earlier paper of extended configuration families of simple divisors, we study the existence and deformation theory for spherical conic metrics with some or all of the cone angles greater than $2pi$. Deformations are obstructed precisely when the number $2$ lies in the spectrum of the Friedrichs extension of the Laplacian. Our main result is that, in this case, it is possible to find a smooth local moduli space of solutions by allowing the cone points to split. This analytic fact reflects geometric constructions in papers by Mondello and Panov.
Given a Hermitian line bundle $Lto M$ over a closed, oriented Riemannian manifold $M$, we study the asymptotic behavior, as $epsilonto 0$, of couples $(u_epsilon, abla_epsilon)$ critical for the rescalings begin{align*} &E_epsilon(u, abla)=int_MBig(| abla u|^2+epsilon^2|F_ abla|^2+frac{1}{4epsilon^2}(1-|u|^2)^2Big) end{align*} of the self-dual Yang-Mills-Higgs energy, where $u$ is a section of $L$ and $ abla$ is a Hermitian connection on $L$ with curvature $F_{ abla}$. Under the natural assumption $limsup_{epsilonto 0}E_epsilon(u_epsilon, abla_epsilon)<infty$, we show that the energy measures converge subsequentially to (the weight measure $mu$ of) a stationary integral $(n-2)$-varifold. Also, we show that the $(n-2)$-currents dual to the curvature forms converge subsequentially to $2piGamma$, for an integral $(n-2)$-cycle $Gamma$ with $|Gamma|lemu$. Finally, we provide a variational construction of nontrivial critical points $(u_epsilon, abla_epsilon)$ on arbitrary line bundles, satisfying a uniform energy bound. As a byproduct, we obtain a PDE proof, in codimension two, of Almgrens existence result of (nontrivial) stationary integral $(n-2)$-varifolds in an arbitrary closed Riemannian manifold.
122 - Jeffrey Streets 2021
We give a complete description of the global existence and convergence for the Ricci-Yang-Mills flow on $T^k$ bundles over Riemann surfaces. These results equivalently describe solutions to generalized Ricci flow and pluriclosed flow with symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا