Motivated by the supersymmetric extension of Liouville theory in the recent physics literature, we couple the standard Liouville functional with a spinor field term. The resulting functional is conformally invariant. We study geometric and analytic aspects of the resulting Euler-Lagrange equations, culminating in a blow up analysis.
We develop analytical methods for nonlinear Dirac equations. Examples of such equations include Dirac-harmonic maps with curvature term and the equations describing the generalized Weierstrass representation of surfaces in three-manifolds. We provide the key analytical steps, i.e., small energy regularity and removable singularity theorems and energy identities for solutions.
We continue our study, initiated in our earlier paper, of Riemann surfaces with constant curvature and isolated conic singularities. Using the machinery developed in that earlier paper of extended configuration families of simple divisors, we study the existence and deformation theory for spherical conic metrics with some or all of the cone angles greater than $2pi$. Deformations are obstructed precisely when the number $2$ lies in the spectrum of the Friedrichs extension of the Laplacian. Our main result is that, in this case, it is possible to find a smooth local moduli space of solutions by allowing the cone points to split. This analytic fact reflects geometric constructions in papers by Mondello and Panov.
In this paper, we develop the blow-up analysis and establish the energy quantization for solutions to super-Liouville type equations on Riemann surfaces with conical singularities at the boundary. In other problems in geometric analysis, the blow-up analysis usually strongly utilizes conformal invariance, which yields a Noether current from which strong estimates can be derived. Here, however, the conical singularities destroy conformal invariance. Therefore, we develop another, more general, method that uses the vanishing of the Pohozaev constant for such solutions to deduce the removability of boundary singularities.
In this paper, we will study harmonic functions on the complete and incomplete spaces with nonnegative Ricci curvature which exhibit inhomogeneous collapsing behaviors at infinity. The main result states that any nonconstant harmonic function on such spaces yields a definite exponential growth rate which depends explicitly on the geometric data at infinity.
Knizhnik-Zamolodchikov-Bernard equations for twisted conformal blocks on compact Riemann surfaces with marked points are written explicitly in a general projective structure in terms of correlation functions in the theory of twisted b-c systems. It is checked that on the moduli space the equations provide a flat connection with the spectral parameter.