Do you want to publish a course? Click here

Wiener-Hopf Factorization for Arithmetic Brownian Motion with Time-Dependent Drift and Volatility

304   0   0.0 ( 0 )
 Added by Ruoting Gong
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we obtain a Wiener-Hopf type factorization for a time-inhomogeneous arithmetic Brownian motion with deterministic time-dependent drift and volatility. To the best of our knowledge, this paper is the very first step towards realizing the objective of deriving Wiener-Hopf type factorizations for (real-valued) time-inhomogeneous L{e}vy processes. In particular, we argue that the classical Wiener-Hopf factorization for time-homogeneous L{e}vy processes quite likely does not carry over to the case of time-inhomogeneous L{e}vy processes.



rate research

Read More

This work contributes to the theory of Wiener-Hopf type factorization for finite Markov chains. This theory originated in the seminal paper Barlow et al. (1980), which treated the case of finite time-homogeneous Markov chains. Since then, several works extended the results of Barlow et al. (1980) in many directions. However, all these extensions were dealing with time-homogeneous Markov case. The first work dealing with the time-inhomogeneous situation was Bielecki et al. (2018), where Wiener-Hopf type factorization for time-inhomogeneous finite Markov chain with piecewise constant generator matrix function was derived. In the present paper we go further: we derive and study Wiener-Hopf type factorization for time-inhomogeneous finite Markov chain with the generator matrix function being a fairly general matrix valued function of time.
We consider the last zero crossing time $T_{mu,t}$ of a Brownian motion, with drift $mu eq 0$ in the time interval $[0, t]$. We prove the large deviation principle of ${T_{mu sqrt r t} : r > 0 }$ as $r$ tends to infinity. Moreover, motivated by the results on moderate deviations in the literature, we also prove a class of large deviation principles for the same random variables with different scalings, which are governed by the same rate function. Finally we compare some aspects of the classical moderate deviation results, and the results in this paper.
177 - Shige Peng 2007
We introduce a new notion of G-normal distributions. This will bring us to a new framework of stochastic calculus of Itos type (Itos integral, Itos formula, Itos equation) through the corresponding G-Brownian motion. We will also present analytical calculations and some new statistical methods with application to risk analysis in finance under volatility uncertainty. Our basic point of view is: sublinear expectation theory is very like its special situation of linear expectation in the classical probability theory. Under a sublinear expectation space we still can introduce the notion of distributions, of random variables, as well as the notions of joint distributions, marginal distributions, etc. A particularly interesting phenomenon in sublinear situations is that a random variable Y is independent to X does not automatically implies that X is independent to Y. Two important theorems have been proved: The law of large number and the central limit theorem.
In this paper, we will first give the numerical simulation of the sub-fractional Brownian motion through the relation of fractional Brownian motion instead of its representation of random walk. In order to verify the rationality of this simulation, we propose a practical estimator associated with the LSE of the drift parameter of mixed sub-fractional Ornstein-Uhlenbeck process, and illustrate the asymptotical properties according to our method of simulation when the Hurst parameter $H>1/2$.
Consider a storage system where the content is driven by a Brownian motion absent control. At any time, one may increase or decrease the content at a cost proportional to the amount of adjustment. A decrease of the content takes effect immediately, while an increase is realized after a fixed lead time $lt$. Holding costs are incurred continuously over time and are a convex function of the content. The objective is to find a control policy that minimizes the expected present value of the total costs. Due to the positive lead time for upward adjustments, one needs to keep track of all the outstanding upward adjustments as well as the actual content at time $t$ as there may also be downward adjustments during $[t,t+lt)$, i.e., the state of the system is a function on $[0,ell]$. To the best of our knowledge, this is the first paper to study instantaneous control of stochastic systems in such a functional setting. We first extend the concept of $L^ atural$-convexity to function spaces and establish the $L^ atural$-convexity of the optimal cost function. We then derive various properties of the cost function and identify the structure of the optimal policy as a state-dependent two-sided reflection mapping making the minimum amount of adjustment necessary to keep the system states within a certain region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا