Do you want to publish a course? Click here

Mixed sub-fractional Brownian motion and drift estimation of related Ornstein-Uhlenbeck process

125   0   0.0 ( 0 )
 Added by Chunhao Cai
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we will first give the numerical simulation of the sub-fractional Brownian motion through the relation of fractional Brownian motion instead of its representation of random walk. In order to verify the rationality of this simulation, we propose a practical estimator associated with the LSE of the drift parameter of mixed sub-fractional Ornstein-Uhlenbeck process, and illustrate the asymptotical properties according to our method of simulation when the Hurst parameter $H>1/2$.



rate research

Read More

116 - S.C. Lim , Chai Hok Eab 2019
Tempered fractional Brownian motion is revisited from the viewpoint of reduced fractional Ornstein-Uhlenbeck process. Many of the basic properties of the tempered fractional Brownian motion can be shown to be direct consequences or modifications of the properties of fractional Ornstein-Uhlenbeck process. Mixed tempered fractional Brownian motion is introduced and its properties are considered. Tempered fractional Brownian motion is generalised from single index to two indices. Finally, tempered multifractional Brownian motion and its properties are studied.
This paper addresses the problem of estimating drift parameter of the Ornstein - Uhlenbeck type process, driven by the sum of independent standard and fractional Brownian motions. The maximum likelihood estimator is shown to be consistent and asymptotically normal in the large-sample limit, using some recent results on the canonical representation and spectral structure of mixed processes.
80 - Chunhao Cai , Min Zhang 2020
This paper is devoted to parameter estimation of the mixed fractional Ornstein-Uhlenbeck process with a drift. Large sample asymptotical properties of the Maximum Likelihood Estimator is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from cite{CK19}
The Ornstein-Uhlenbeck process can be seen as a paradigm of a finite-variance and statistically stationary rough random walk. Furthermore, it is defined as the unique solution of a Markovian stochastic dynamics and shares the same local regularity as the one of the Brownian motion. Based on previous works, we propose to include in the framework of one of its generalization, the so-called fractional Ornstein-Uhlenbeck process, some Multifractal corrections, using a Gaussian Multiplicative Chaos. The aforementioned process, called a Multifractal fractional Ornstein-Uhlenbeck process, is a statistically stationary finite-variance process. Its underlying dynamics is non-Markovian, although non-anticipating and causal. The numerical scheme and theoretical approach are based on a regularization procedure, that gives a meaning to this dynamical evolution, which unique solution converges towards a well-behaved stochastic process.
To extend several known centered Gaussian processes, we introduce a new centered mixed self-similar Gaussian process called the mixed generalized fractional Brownian motion, which could serve as a good model for a larger class of natural phenomena. This process generalizes both the well known mixed fractional Brownian motion introduced by Cheridito [10] and the generalized fractional Brownian motion introduced by Zili [31]. We study its main stochastic properties, its non-Markovian and non-stationarity characteristics and the conditions under which it is not a semimartingale. We prove the long range dependence properties of this process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا