Do you want to publish a course? Click here

G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty

168   0   0.0 ( 0 )
 Added by Shi-Ge Peng
 Publication date 2007
  fields
and research's language is English
 Authors Shige Peng




Ask ChatGPT about the research

We introduce a new notion of G-normal distributions. This will bring us to a new framework of stochastic calculus of Itos type (Itos integral, Itos formula, Itos equation) through the corresponding G-Brownian motion. We will also present analytical calculations and some new statistical methods with application to risk analysis in finance under volatility uncertainty. Our basic point of view is: sublinear expectation theory is very like its special situation of linear expectation in the classical probability theory. Under a sublinear expectation space we still can introduce the notion of distributions, of random variables, as well as the notions of joint distributions, marginal distributions, etc. A particularly interesting phenomenon in sublinear situations is that a random variable Y is independent to X does not automatically implies that X is independent to Y. Two important theorems have been proved: The law of large number and the central limit theorem.



rate research

Read More

In this paper we obtain a Wiener-Hopf type factorization for a time-inhomogeneous arithmetic Brownian motion with deterministic time-dependent drift and volatility. To the best of our knowledge, this paper is the very first step towards realizing the objective of deriving Wiener-Hopf type factorizations for (real-valued) time-inhomogeneous L{e}vy processes. In particular, we argue that the classical Wiener-Hopf factorization for time-homogeneous L{e}vy processes quite likely does not carry over to the case of time-inhomogeneous L{e}vy processes.
The free multiplicative Brownian motion $b_{t}$ is the large-$N$ limit of the Brownian motion on $mathsf{GL}(N;mathbb{C}),$ in the sense of $ast $-distributions. The natural candidate for the large-$N$ limit of the empirical distribution of eigenvalues is thus the Brown measure of $b_{t}$. In previous work, the second and third authors showed that this Brown measure is supported in the closure of a region $Sigma_{t}$ that appeared work of Biane. In the present paper, we compute the Brown measure completely. It has a continuous density $W_{t}$ on $bar{Sigma}_{t},$ which is strictly positive and real analytic on $Sigma_{t}$. This density has a simple form in polar coordinates: [ W_{t}(r,theta)=frac{1}{r^{2}}w_{t}(theta), ] where $w_{t}$ is an analytic function determined by the geometry of the region $Sigma_{t}$. We show also that the spectral measure of free unitary Brownian motion $u_{t}$ is a shadow of the Brown measure of $b_{t}$, precisely mirroring the relationship between Wigners semicircle law and Ginibres circular law. We develop several new methods, based on stochastic differential equations and PDE, to prove these results.
96 - Guomin Liu 2018
In this paper, we prove the Girsanov formula for $G$-Brownian motion without the non-degenerate condition. The proof is based on the perturbation method in the nonlinear setting by constructing a product space of the $G$-expectation space and a linear space that contains a standard Brownian motion. The estimates for exponential martingale of $G$-Brownian motion are important for our arguments.
169 - Hanwu Li , Shige Peng 2017
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected GBSDEs, we apply a martingale condition instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization.
132 - Fenfen Yang 2018
We establish Harnack inequality and shift Harnack inequality for stochastic differential equation driven by $G$-Brownian motion. As applications, the uniqueness of invariant linear expectations and estimates on the $sup$-kernel are investigated, where the $sup$-kernel is introduced in this paper for the first time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا