Do you want to publish a course? Click here

Bayesian inference for compact binary coalescences with BILBY: Validation and application to the first LIGO--Virgo gravitational-wave transient catalogue

160   0   0.0 ( 0 )
 Added by Isobel Romero-Shaw
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational waves provide a unique tool for observational astronomy. While the first LIGO--Virgo catalogue of gravitational-wave transients (GWTC-1) contains eleven signals from black hole and neutron star binaries, the number of observations is increasing rapidly as detector sensitivity improves. To extract information from the observed signals, it is imperative to have fast, flexible, and scalable inference techniques. In a previous paper, we introduced BILBY: a modular and user-friendly Bayesian inference library adapted to address the needs of gravitational-wave inference. In this work, we demonstrate that BILBY produces reliable results for simulated gravitational-wave signals from compact binary mergers, and verify that it accurately reproduces results reported for the eleven GWTC-1 signals. Additionally, we provide configuration and output files for all analyses to allow for easy reproduction, modification, and future use. This work establishes that BILBY is primed and ready to analyse the rapidly growing population of compact binary coalescence gravitational-wave signals.



rate research

Read More

We report on the population of the 47 compact binary mergers detected with a false-alarm rate 1/yr in the second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, we find that the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; it is more consistent with a broken power law with a break at $39.7^{+20.3}_{-9.1},M_odot$, or a power law with a Gaussian feature peaking at $33.1^{+4.0}_{-5.6},M_odot$ (90% credible interval). While the primary mass distribution must extend to $sim65,M_odot$ or beyond, only $2.9^{+3.5}_{1.7}%$ of systems have primary masses greater than $45,M_odot$. Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, 12% to 44% of BBH systems have spins tilted by more than $90^circ$, giving rise to a negative effective inspiral spin parameter $chi_mathrm{eff}$. Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBH with non-vanishing $|chi_mathrm{eff}| > 0.01$ are dynamically assembled. Third, we estimate merger rates, finding $mathcal{R}_text{BBH} = 23.9^{+14.3}_{8.6}$ Gpc$^{-3}$ yr$^{-1}$ for BBH and $mathcal{R}_text{BNS}= 320^{+490}_{-240}$ Gpc$^{-3}$ yr$^{-1}$ for binary neutron stars. We find that the BBH rate likely increases with redshift ($85%$ credibility), but not faster than the star-formation rate ($86%$ credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.
We investigate the use of particle swarm optimization (PSO) algorithm for detection of gravitational-wave signals from compact binary coalescences. We show that the PSO is fast and effective in searching for gravitational wave signals. The PSO-based aligned-spin coincident multi-detector search recovers appreciably more gravitational-wave signals, for a signal-to-noise ratio (SNR) of 10, the PSO based aligned-spin search recovers approximately 26 $%$ more events as compared to the template bank searches. The PSO-based aligned-spin coincident search uses 48k matched-filtering operations, and provides a better parameter estimation accuracy at the detection stage, as compared to the PyCBC template-bank search in LIGOs second observation run (O2) with 400k template points. We demonstrate an effective PSO-based precessing coincident search with 320k match-filtering operations per detector. We present results of an all-sky aligned-spin coherent search with 576k match-filtering operations per detector, for some examples of two-, three-, and four-detector networks constituting of the LIGO detectors in Hanford and Livingston, Virgo and KAGRA. Techniques for background estimation that are applicable to real data for PSO-based coincident and coherent searches are also presented.
While a fully-coherent all-sky search is known to be optimal for detecting signals from compact binary coalescences (CBCs), its high computational cost has limited current searches to less sensitive coincidence-based schemes. For a network of first generation GW detectors, it has been demonstrated that Particle Swarm Optimization (PSO) can reduce the computational cost of this search, in terms of the number of likelihood evaluations, by a factor of $approx 10$ compared to a grid-based optimizer. Here, we extend the PSO-based search to a network of second generation detectors and present further substantial improvements in its performance by adopting the local-best variant of PSO and an effective strategy for tuning its configuration parameters. It is shown that a PSO-based search is viable over the entire binary mass range relevant to second generation detectors at realistic signal strengths.
Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each gravitational wave event within a 1000 second time window centered around the reported merger time. One search uses a model-independent unbinned maximum likelihood analysis, which uses neutrino data from IceCube to search for point-like neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 second window for each of the 11 GW events. These limits range from 0.02-0.7 $mathrm{GeV~cm^{-2}}$. We also set limits on the total isotropic equivalent energy, $E_{mathrm{iso}}$, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 $times$ 10$^{51}$ - 1.8 $times$ 10$^{55}$ erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time.
80 - Wen Zhao , Linqing Wen 2017
We use the Fisher information matrix to investigate the angular resolution and luminosity distance uncertainty for coalescing binary neutron stars (BNSs) and neutron star-black hole binaries (NSBHs) detected by the third-generation (3G) gravitational-wave (GW) detectors. Our study focuses on an individual 3G detector and a network of up to four 3G detectors at different locations including the US, Europe, China and Australia for the proposed Einstein Telescope (ET) and Cosmic Explorer (CE) detectors. We in particular examine the effect of the Earths rotation, as GW signals from BNS and low mass NSBH systems could be hours long for 3G detectors. We find that, a time-dependent antenna beam-pattern function can help better localize BNS and NSBH sources, especially those edge-on ones. The medium angular resolution for one ET-D detector is around 150 deg$^2$ for BNSs at a redshift of $z=0.1$. The medium angular resolution for a network of two CE detectors in the US and Europe respectively is around 20 deg$^2$ at $z=0.2$ for the simulated BNS and NSBH samples. While for a network of two ET-D detectors, the similar angular resolution can be achieved at a much higher redshift of $z=0.5$. The angular resolution of a network of three detectors is mainly determined by the baselines between detectors regardless of the CE or ET detector type. We discuss the implications of our results to constrain the Hubble constant $H_0$, the deceleration parameter $q_0$ and the equation-of-state (EoS) of dark energy. We find that in general, if 10 BNSs or NSBHs at $z=0.1$ with known redshifts are detected, $H_0$ can be measured with an accuracy of $0.9%$. If 1000 face-on BNSs at $z<2$ are detected with known redshifts, we are able to achieve $Delta q_0=0.002$, or $Delta w_0=0.03$ and $Delta w_a=0.2$ for dark energy.(Abridged version).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا