Do you want to publish a course? Click here

Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology

81   0   0.0 ( 0 )
 Added by Wen Zhao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the Fisher information matrix to investigate the angular resolution and luminosity distance uncertainty for coalescing binary neutron stars (BNSs) and neutron star-black hole binaries (NSBHs) detected by the third-generation (3G) gravitational-wave (GW) detectors. Our study focuses on an individual 3G detector and a network of up to four 3G detectors at different locations including the US, Europe, China and Australia for the proposed Einstein Telescope (ET) and Cosmic Explorer (CE) detectors. We in particular examine the effect of the Earths rotation, as GW signals from BNS and low mass NSBH systems could be hours long for 3G detectors. We find that, a time-dependent antenna beam-pattern function can help better localize BNS and NSBH sources, especially those edge-on ones. The medium angular resolution for one ET-D detector is around 150 deg$^2$ for BNSs at a redshift of $z=0.1$. The medium angular resolution for a network of two CE detectors in the US and Europe respectively is around 20 deg$^2$ at $z=0.2$ for the simulated BNS and NSBH samples. While for a network of two ET-D detectors, the similar angular resolution can be achieved at a much higher redshift of $z=0.5$. The angular resolution of a network of three detectors is mainly determined by the baselines between detectors regardless of the CE or ET detector type. We discuss the implications of our results to constrain the Hubble constant $H_0$, the deceleration parameter $q_0$ and the equation-of-state (EoS) of dark energy. We find that in general, if 10 BNSs or NSBHs at $z=0.1$ with known redshifts are detected, $H_0$ can be measured with an accuracy of $0.9%$. If 1000 face-on BNSs at $z<2$ are detected with known redshifts, we are able to achieve $Delta q_0=0.002$, or $Delta w_0=0.03$ and $Delta w_a=0.2$ for dark energy.(Abridged version).



rate research

Read More

Third-generation (3G) gravitational-wave (GW) detectors will be able to observe binary-black-hole mergers (BBHs) up to redshift of $sim 30$. This gives unprecedented access to the formation and evolution of BBHs throughout cosmic history. In this paper we consider three sub-populations of BBHs originating from the different evolutionary channels: isolated formation in galactic fields, dynamical formation in globular clusters and mergers of black holes formed from Population III (Pop III) stars at very high redshift. Using input from populations synthesis analyses, we created two months of simulated data of a network of 3G detectors made of two Cosmic Explorers and an Einstein Telescope, consisting of $sim16000$ field and cluster BBHs as well as $sim400$ Pop III BBHs. First, we show how one can use non-parametric models to infer the existence and characteristic of a primary and secondary peak in the merger rate distribution. In particular, the location and the height of the secondary peak around $zapprox 12$, arising from the merger of Pop III remnants, can be constrained at $mathcal{O}(10%)$ level. Then we perform a modeled analysis, using phenomenological templates for the merger rates of the three sub-population, and extract the branching ratios and the characteristic parameters of the merger rate densities of the individual formation channels. With this modeled method, the uncertainty on the measurement of the fraction of Pop III BBHs can be improved to $lesssim 10%$, while the ratio between field and cluster BBHs can be measured with an uncertainty of $sim 50%$.
The observation of gravitational wave signals from binary black hole mergers has established the field of gravitational wave astronomy. It is expected that future networks of gravitational wave detectors will possess great potential in probing various aspects of astronomy. An important consideration for successive improvement of current detectors or establishment on new sites is knowledge of the minimum number of detectors required to perform precision astronomy. We attempt to answer this question by assessing ability of future detector networks in detecting and localizing binary neutron stars mergers in the sky. This is an important aspect as a good localization ability is crucial for many of the scientific goals of gravitational wave astronomy, such as electromagnetic follow-up, measuring the properties of compact binaries throughout cosmic history, and cosmology. We find that although two detectors at improved sensitivity are sufficient to get a substantial increase in the number of observed signals, at least three detectors of comparable sensitivity are required to localize majority of the signals, typically to within around 10 deg$^{2}$ --- adequate for follow-up with most wide field of view optical telescopes.
Rapid localization of gravitational-wave events is important for the success of the multi-messenger observations. The forthcoming improvements and constructions of gravitational-wave detectors will enable detecting and localizing compact-binary coalescence events even before mergers, which is called early warning. The performance of early warning can be improved by considering modulation of gravitational wave signal amplitude due to the Earth rotation and the precession of a binary orbital plane caused by the misaligned spins of compact objects. In this paper, for the first time we estimate localization precision in the early warning quantitatively, taking into account an orbital precession. We find that a neutron star-black hole binary at $z=0.1$ can typically be localized to $100,mathrm{deg}^2$ and $10,mathrm{deg^2}$ at the time of $12$ -- $15 ,mathrm{minutes}$ and $50$ -- $300,mathrm{seconds}$ before merger, respectively, which cannot be achieved without the precession effect.
We investigate the ability of current and third-generation gravitational wave (GW) detectors to determine the delay time distribution (DTD) of binary neutron stars (BNS) through a direct measurement of the BNS merger rate as a function of redshift. We assume that the DTD follows a power law distribution with a slope $Gamma$ and a minimum merger time $t_{rm min}$, and also allow the overall BNS formation efficiency per unit stellar mass to vary. By convolving the DTD and mass efficiency with the cosmic star formation history, and then with the GW detector capabilities, we explore two relevant regimes. First, for the current generation of GW detectors, which are only sensitive to the local universe, but can lead to precise redshift determinations via the identification of electromagnetic counterparts and host galaxies, we show that the DTD parameters are strongly degenerate with the unknown mass efficiency and therefore cannot be determined uniquely. Second, for third-generation detectors such as Einstein Telescope (ET) and Cosmic Explorer (CE), which will detect BNS mergers at cosmological distances, but with a redshift uncertainty inherent to GW-only detections ($delta(z)/zapprox 0.1z$), we show that the DTD and mass efficiency can be well-constrained to better than 10% with a year of observations. This long-term approach to determining the DTD through a direct mapping of the BNS merger redshift distribution will be supplemented by more near term studies of the DTD through the properties of BNS merger host galaxies at $zapprox 0$ (Safarzadeh & Berger 2019).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا