No Arabic abstract
Taking advantage of phase-transition and reconfigurable metamaterials, dynamic control of nanoscale thermal modulation can be achieved through the near-field radiative thermal rectification devices. In this work, an active-tuning near-field thermal rectifier using reconfigurable phase-transition metamaterials is explored. The rectifier has two terminals separated by vacuum, working under a controllable operational temperature around the critical temperature of the phase-transition material VO2. One of the terminals is a stretchable structure made of PDMS thin film and grating consisting of various types of phase-transition material. The effects of various inclusion forms and all the related geometric parameters are well analyzed. The controllable nanoscale thermal modulation can be achieved and the ultrahigh rectification ratios of 23.7 and 19.8, the highest values ever predicted, can be obtained for two deformation scenarios, respectively. It will shed light on the dynamic tuning of small-scale thermal transport and light manipulation.
We propose a mechanism to substantially rectify radiative heat flow by matching thin films of metal-to-insulator transition materials and polar dielectrics in the electromagnetic near field. By leveraging the distinct scaling behaviors of the local density of states with film thickness for metals and insulators, we theoretically achieve rectification ratios over 140-a 10-fold improvement over the state of the art-with nanofilms of vanadium dioxide and cubic boron nitride in the parallel-plane geometry at experimentally feasible gap sizes (~100 nm). Our rational design offers relative ease of fabrication, flexible choice of materials, and robustness against deviations from optimal film thicknesses. We expect this work to facilitate the application of thermal diodes in solid-state thermal circuits and energy conversion devices.
By means of fluctuationnal electrodynamics, we calculate radiative heat flux between two pla-nar materials respectively made of SiC and SiO2. More specifically, we focus on a first (direct) situation where one of the two materials (for example SiC) is at ambient temperature whereas the second material is at a higher one, then we study a second (reverse) situation where the material temperatures are inverted. When the two fluxes corresponding to the two situations are different, the materials are said to exhibit a thermal rectification, a property with potential applications in thermal regulation. Rectification variations with temperature and separation distance are here reported. Calculations are performed using material optical data experimentally determined by Fourier transform emission spectrometry of heated materials between ambient temperature (around 300 K) and 1480 K. It is shown that rectification is much more important in the near-field domain, i.e. at separation distances smaller than the thermal wavelength. In addition, we see that the larger is the temperature difference, the larger is rectification. Large rectification is finally interpreted due to a weakening of the SiC surface polariton when temperature increases, a weakening which affects much less SiO2 resonances.
Radiative thermal diodes based on two-element structures rectify heat flows thanks to a temperature dependence of material optical properties. The heat transport asymmetry through these systems, however, remains weak without a significant change in material properties with the temperature. Here we explore the heat transport in three-element radiative systems and demonstrate that a strong asymmetry in the thermal conductance can appear because of many-body interactions, without any dependence of optical properties on the temperature. The analysis of transport in three-body systems made with polar dielectrics and metallic layers reveals that rectification coefficients exceeding 50 % can be achieved in the near-field regime with temperature differences of about 200 K. This work paves the way for compact devices to rectify near field radiative heat fluxes over a broad temperature range and could have important applications in the domain of nanoscale thermal management.
Micro-nanoparticle systems have wide applications in thermal science and technology. In dense particulate system, the particle separation distance may be less than the characteristic thermal wavelength and near field effect will be significant and become a key factor to influence thermal radiation transfer in the system. In this study, radiative heat transfer (RHT) between two metallic nanoparticles clusters are explored using many-body radiative heat transfer theory implemented with the coupled electric and magnetic dipole (CEMD) approach, which effectively takes into account the contribution of magnetic polarization of metallic nanoparticles on heat exchange. As the focus, the effects of magnetic polarization and many-body interaction (MBI) on RHT were analyzed. The effects of fractal dimension and relative orientation of the clusters were also analyzed. Results show that the contribution of magnetically polarized eddy-current Joule dissipation dominates the RHT between Ag nanoparticle clusters. If only electric polarization (EP approach) is considered, the heat conductance will be underestimated as compared with the CEMD approach in both near field and far field regime. The effect of MBI on the RHT between Ag nanoparticle clusters is unobvious at room temperature, which is quite different from the SiC nanoparticle clusters. For the latter, MBI tends to suppress RHT significantly. The relative orientation has remarkable effect on radiative heat flux for clusters with lacy structure when the separation distance is in the near field. While for the separation distance in far field, both the relative orientation and the fractal dimension has a weak influence on radiative heat flux. This work will help the understanding of thermal transport in dense particulate system.
Thermal control is of critical importance for normal operation of spacecraft. Given thermal radiation is the only means of heat dissipation in space, an efficient thermal control approach for spacecraft is to coat the radiator with a tunable-emittance skin that can tune its heat dissipation according to various thermal conditions. The existing schemes solely relying on far-field thermal radiation, which are based on mechanical, electrochromic or thermochromic working principles, are difficult to combine the advantages of all-solid-state structure, actively and accurate tuning, and large tuning range of heat flux. In this work, we propose a near-field radiation assisted (NFRA) smart skin for thermal control which can tune the heat rejection accurately and in a large range. It contains a metal-insulator-semiconductor (MIS) structure, where the carrier distribution in the semiconductor layer can be electrically altered. In this way, the near-field heat flux, and ultimately the skin emission power expressed using effective emittance, can be controlled as a function of the applied voltage. The variation range of the effective emittance can exceed 0.7 when adjusting the applied voltage from -10 V to 100 V with our preliminary design. This work opens a new way of smart skin design for active spacecraft thermal control.