No Arabic abstract
Near the transverse-field induced quantum critical point of the Ising chain, an exotic dynamic spectrum consisting of exactly eight particles was predicted, which is uniquely described by an emergent quantum integrable field theory with the symmetry of the $E_8$ Lie algebra, but rarely explored experimentally. Here we use high-resolution terahertz spectroscopy to resolve quantum spin dynamics of the quasi-one-dimensional Ising antiferromagnet BaCo$_2$V$_2$O$_8$ in an applied transverse field. By comparing to an analytical calculation of the dynamical spin correlations, we identify $E_8$ particles as well as their two-particle excitations.
Quantum phase transitions take place between distinct phases of matter at zero temperature. Near the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of the system. A symmetry described by the E8 Lie group with a spectrum of 8 particles was long predicted to appear near the critical point of an Ising chain. We realize this system experimentally by tuning the quasi-one-dimensional Ising ferromagnet CoNb2O6 through its critical point using strong transverse magnetic fields. The spin excitations are observed to change character from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a ratio that approaches the golden mean as predicted for the first two meson particles of the E8 spectrum. Our results demonstrate the power of symmetry to describe complex quantum behaviours.
Close to the quantum critical point of the transverse-field Ising spin-chain model, an exotic dynamic spectrum was predicted to emerge upon a perturbative longitudinal field. The dynamic spectrum consists of eight particles and is governed by the symmetry of the $E_8$ Lie algebra. Here we report on high-resolution terahertz spectroscopy of quantum spin dynamics in the ferromagnetic Ising-chain material CoNb$_2$O$_6$. At 0.25 K in the magnetically ordered phase we identify characteristics of the first six $E_8$ particles, $mathbf{m}_1$ to $mathbf{m}_6$, and the two-particle ($mathbf{m}_1+mathbf{m}_2$) continuum in an applied transverse magnetic field of $B_c^{1D}=4.75$ T, before the three-dimensional magnetic order is suppressed above $B_c^{3D}approx 5.3$ T. The observation of the higher-energy particles ($mathbf{m}_3$ to $mathbf{m}_6$) above the low-energy two-particle continua features quantum many-body effects in the exotic dynamic spectrum.
We study the quantum phase transition from a Dirac spin liquid to an antiferromagnet driven by condensing monopoles with spin quantum numbers. We describe the transition in field theory by tuning a fermion interaction to condense a spin-Hall mass, which in turn allows the appropriate monopole operators to proliferate and confine the fermions. We compute various critical exponents at the quantum critical point (QCP), including the scaling dimensions of monopole operators by using the state-operator correspondence of conformal field theory. We find that the degeneracy of monopoles in QED3 is lifted and yields a non-trivial monopole hierarchy at the QCP. In particular, the lowest monopole dimension is found to be smaller than that of QED3 using a large $N_f$ expansion where $2N_f$ is the number of fermion flavors. For the minimal magnetic charge, this dimension is $0.39N_f$ at leading order. We also study the QCP between Dirac and chiral spin liquids, which allows us to test a conjectured duality to a bosonic CP$^1$ theory. Finally, we discuss the implications of our results for quantum magnets on the Kagome lattice.
In recent years, new phases of matter that are beyond the Landau paradigm of symmetry breaking are mountaining, and to catch up with this fast development, new notions of global symmetry are introduced. Among them, the higher-form symmetry, whose symmetry charges are spatially extended, can be used to describe topologically ordered phases as the spontaneous breaking of the symmetry, and consequently unify the unconventional and conventional phases under the same conceptual framework. However, such conceptual tools have not been put into quantitative test except for certain solvable models, therefore limiting its usage in the more generic quantum manybody systems. In this work, we study Z2 higher-form symmetry in a quantum Ising model, which is dual to the global (0-form) Ising symmetry. We compute the expectation value of the Ising disorder operator, which is a non-local order parameter for the higher-form symmetry, analytically in free scalar theories and through unbiased quantum Monte Carlo simulations for the interacting fixed point in (2+1)d. From the scaling form of this extended object, we confirm that the higher-form symmetry is indeed spontaneously broken inside the paramagnetic, or quantum disordered phase (in the Landau sense), but remains symmetric in the ferromagnetic/ordered phase. At the Ising critical point, we find that the higher-form symmetry is also spontaneously broken, even though the 0-form symmetry is preserved. We discuss examples where both the global 0-form symmetry and the dual higher-form symmetry are preserved, in systems with a codimension-1 manifold of gapless points in momentum space. These results provide non-trivial working examples of higher-form symmetry operators, including the first computation of one-form order parameter in an interacting conformal field theory, and open the avenue for their generic implementation in quantum many-body systems.
The quantum criticality of an Ising-like screw chain antiferromagnet SrCo$_2$V$_2$O$_8$, with a transverse magnetic field applied along the crystalline $a$-axis, is investigated by ultra-low temperature NMR measurements. The N{e}el temperature is rapidly and continuously suppressed by the field, giving rise to a quantum critical point (QCP) at $H_{C{_1}}$$approx$~7.0~T. Surprisingly, a second QCP at $H_{C{_2}}approx$~7.7~T featured with gapless excitations is resolved from both the double-peak structure of the field dependent spin-lattice relaxation rate $1/^{51}T_1$ at low temperatures and the weakly temperature-dependent $1/^{51}T_1$ at this field. Our data, combined with numerical calculations, suggest that the induced effective staggered transverse field significantly lowers the critical fields, and leads to an exposed QCP at $H_{C{_2}}$, which belongs to the one-dimensional transverse-field Ising universality.