Do you want to publish a course? Click here

Transition from a Dirac spin liquid to an antiferromagnet: Monopoles in a QED3-Gross-Neveu theory

117   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the quantum phase transition from a Dirac spin liquid to an antiferromagnet driven by condensing monopoles with spin quantum numbers. We describe the transition in field theory by tuning a fermion interaction to condense a spin-Hall mass, which in turn allows the appropriate monopole operators to proliferate and confine the fermions. We compute various critical exponents at the quantum critical point (QCP), including the scaling dimensions of monopole operators by using the state-operator correspondence of conformal field theory. We find that the degeneracy of monopoles in QED3 is lifted and yields a non-trivial monopole hierarchy at the QCP. In particular, the lowest monopole dimension is found to be smaller than that of QED3 using a large $N_f$ expansion where $2N_f$ is the number of fermion flavors. For the minimal magnetic charge, this dimension is $0.39N_f$ at leading order. We also study the QCP between Dirac and chiral spin liquids, which allows us to test a conjectured duality to a bosonic CP$^1$ theory. Finally, we discuss the implications of our results for quantum magnets on the Kagome lattice.



rate research

Read More

Monopole operators are topological disorder operators in 2+1 dimensional compact gauge field theories appearing notably in quantum magnets with fractionalized excitations. For example, their proliferation in a spin-1/2 kagome Heisenberg antiferromagnet triggers a quantum phase transition from a Dirac spin liquid phase to an antiferromagnet. The quantum critical point (QCP) for this transition is described by a conformal field theory: Compact quantum electrodynamics (QED3) with a fermionic self-interaction, a type of QED3-Gross-Neveu model. We obtain the scaling dimensions of monopole operators at the QCP using a state-operator correspondence and a large-N expansion, where 2N is the number of fermion flavors. We characterize the hierarchy of monopole operators at this SU(2) x SU(N) symmetric QCP.
The QED$_3$-Gross-Neveu model is a (2+1)-dimensional U(1) gauge theory involving Dirac fermions and a critical real scalar field. This theory has recently been argued to represent a dual description of the deconfined quantum critical point between Neel and valence bond solid orders in frustrated quantum magnets. We study the critical behavior of the QED$_3$-Gross-Neveu model by means of an epsilon expansion around the upper critical space-time dimension of $D_c^+=4$ up to the three-loop order. Estimates for critical exponents in 2+1 dimensions are obtained by evaluating the different Pade approximants of their series expansion in epsilon. We find that these estimates, within the spread of the Pade approximants, satisfy a nontrivial scaling relation which follows from the emergent SO(5) symmetry implied by the duality conjecture. We also construct explicit evidence for the equivalence between the QED$_3$-Gross-Neveu model and a corresponding critical four-fermion gauge theory that was previously studied within the 1/N expansion in space-time dimensions 2<D<4.
In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalised bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb2Ti2O7. Polarised neutron-scattering experiments show that the diffuse [111]-rod scattering and pinch-point features which develop on cooling are suddenly suppressed below T_C ~ 0.21 K, where magnetic Bragg peaks and a full depolarisation of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, while the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.
The coupling between fermionic matter and gauge fields plays a fundamental role in our understanding of nature, while at the same time posing a challenging problem for theoretical modeling. In this situation, controlled information can be gained by combining different complementary approaches. Here, we study a confinement transition in a system of $N_f$ flavors of interacting Dirac fermions charged under a U(1) gauge field in 2+1 dimensions. Using Quantum Monte Carlo simulations, we investigate a lattice model that exhibits a continuous transition at zero temperature between a gapless deconfined phase, described by three-dimensional quantum electrodynamics, and a gapped confined phase, in which the system develops valence-bond-solid order. We argue that the quantum critical point is in the universality class of the QED$_3$-Gross-Neveu-XY model. We study this field theory within a $1/N_f$ expansion in fixed dimension as well as a renormalization group analysis in $4-epsilon$ space-time dimensions. The consistency between numerical and analytical results is revealed from large to intermediate flavor number.
155 - M. Fu , T. Imai , T.-H. Han 2015
The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of great debate. We conducted 17-O single crystal NMR measurements of the S=1/2 kagome lattice in herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$, which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrate that the intrinsic local spin susceptibility $chi_{kagome}$ deduced from the 17-O NMR frequency shift asymptotes to zero below temperature T ~ 0.03 J, where J ~ 200 K is the Cu-Cu super-exchange interaction. Combined with the magnetic field dependence of $chi_{kagome}$ we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا