Do you want to publish a course? Click here

Quasi Branch and Bound for Smooth Global Optimization

60   0   0.0 ( 0 )
 Added by Nadav Dym
 Publication date 2020
  fields
and research's language is English
 Authors Nadav Dym




Ask ChatGPT about the research

Quasi branch and bound is a recently introduced generalization of branch and bound, where lower bounds are replaced by a relaxed notion of quasi-lower bounds, required to be lower bounds only for sub-cubes containing a minimizer. This paper is devoted to studying the possible benefits of this approach, for the problem of minimizing a smooth function over a cube. This is accomplished by suggesting two quasi branch and bound algorithms, qBnB(2) and qBnB(3), that compare favorably with alternative branch and bound algorithms. The first algorithm we propose, qBnB(2), achieves second order convergence based only on a bound on second derivatives, without requiring calculation of derivatives. As such, this algorithm is suitable for derivative free optimization, for which typical algorithms such as Lipschitz optimization only have first order convergence and so suffer from limited accuracy due to the clustering problem. Additionally, qBnB(2) is provably more efficient than the second order Lipschitz gradient algorithm which does require exact calculation of gradients. The second algorithm we propose, qBnB(3), has third order convergence and finite termination. In contrast with BnB algorithms with similar guarantees who typically compute lower bounds via solving relatively time consuming convex optimization problems, calculation of qBnB(3) bounds only requires solving a small number of Newton iterations. Our experiments verify the potential of both these methods in comparison with state of the art branch and bound algorithms.



rate research

Read More

In recent years, several branch-and-bound (BnB) algorithms have been proposed to globally optimize rigid registration problems. In this paper, we suggest a general framework to improve upon the BnB approach, which we name Quasi BnB. Quasi BnB replaces the linear lower bounds used in BnB algorithms with quadratic quasi-lower bounds which are based on the quadratic behavior of the energy in the vicinity of the global minimum. While quasi-lower bounds are not truly lower bounds, the Quasi-BnB algorithm is globally optimal. In fact we prove that it exhibits linear convergence -- it achieves $epsilon$-accuracy in $~O(log(1/epsilon)) $ time while the time complexity of other rigid registration BnB algorithms is polynomial in $1/epsilon $. Our experiments verify that Quasi-BnB is significantly more efficient than state-of-the-art BnB algorithms, especially for problems where high accuracy is desired.
Electronic phased-array radars offer new possibilities for radar search pattern optimization by using bi-dimensional beam-forming and beam-steering. Radar search pattern optimization can be approximated as a set cover problem and solved using integer programming, while accounting for localized clutter and terrain masks in detection constraints. We present a set cover problem approximation for time-budget minimization of radar search patterns, under constraints of range, detection probability and direction-specific scan update rates. Branch&Bound is a classical optimization procedure for solving combinatorial problems. It is known mainly as an exact algorithm, but features interesting characteristics, making it particularly fit for solving optimization problems in real-time applications and producing just-in-time solutions.
We consider the problem of minimizing a continuous function that may be nonsmooth and nonconvex, subject to bound constraints. We propose an algorithm that uses the L-BFGS quasi-Newton approximation of the problems curvature together with a variant of the weak Wolfe line search. The key ingredient of the method is an active-set selection strategy that defines the subspace in which search directions are computed. To overcome the inherent shortsightedness of the gradient for a nonsmooth function, we propose two strategies. The first relies on an approximation of the $epsilon$-minimum norm subgradient, and the second uses an iterative corrective loop that augments the active set based on the resulting search directions. We describe a Python implementation of the proposed algorithm and present numerical results on a set of standard test problems to illustrate the efficacy of our approach.
We consider stochastic optimization problems where a smooth (and potentially nonconvex) objective is to be minimized using a stochastic first-order oracle. These type of problems arise in many settings from simulation optimization to deep learning. We present Retrospective Approximation (RA) as a universal sequential sample-average approximation (SAA) paradigm where during each iteration $k$, a sample-path approximation problem is implicitly generated using an adapted sample size $M_k$, and solved (with prior solutions as warm start) to an adapted error tolerance $epsilon_k$, using a deterministic method such as the line search quasi-Newton method. The principal advantage of RA is that decouples optimization from stochastic approximation, allowing the direct adoption of existing deterministic algorithms without modification, thus mitigating the need to redesign algorithms for the stochastic context. A second advantage is the obvious manner in which RA lends itself to parallelization. We identify conditions on ${M_k, k geq 1}$ and ${epsilon_k, kgeq 1}$ that ensure almost sure convergence and convergence in $L_1$-norm, along with optimal iteration and work complexity rates. We illustrate the performance of RA with line-search quasi-Newton on an ill-conditioned least squares problem, as well as an image classification problem using a deep convolutional neural net.
145 - Xinjia Chen , Kemin Zhou 2008
In this paper, we have developed a parallel branch and bound algorithm which computes the maximal structured singular value $mu$ without tightly bounding $mu$ for each frequency and thus significantly reduce the computational complexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا