No Arabic abstract
The incidence of Acute Kidney Injury (AKI) commonly happens in the Intensive Care Unit (ICU) patients, especially in the adults, which is an independent risk factor affecting short-term and long-term mortality. Though researchers in recent years highlight the early prediction of AKI, the performance of existing models are not precise enough. The objective of this research is to precisely predict AKI by means of Convolutional Neural Network on Electronic Health Record (EHR) data. The data sets used in this research are two public Electronic Health Record (EHR) databases: MIMIC-III and eICU database. In this study, we take several Convolutional Neural Network models to train and test our AKI predictor, which can precisely predict whether a certain patient will suffer from AKI after admission in ICU according to the last measurements of the 16 blood gas and demographic features. The research is based on Kidney Disease Improving Global Outcomes (KDIGO) criteria for AKI definition. Our work greatly improves the AKI prediction precision, and the best AUROC is up to 0.988 on MIMIC-III data set and 0.936 on eICU data set, both of which outperform the state-of-art predictors. And the dimension of the input vector used in this predictor is much fewer than that used in other existing researches. Compared with the existing AKI predictors, the predictor in this work greatly improves the precision of early prediction of AKI by using the Convolutional Neural Network architecture and a more concise input vector. Early and precise prediction of AKI will bring much benefit to the decision of treatment, so it is believed that our work is a very helpful clinical application.
Identifying patients who will be discharged within 24 hours can improve hospital resource management and quality of care. We studied this problem using eight years of Electronic Health Records (EHR) data from Stanford Hospital. We fit models to predict 24 hour discharge across the entire inpatient population. The best performing models achieved an area under the receiver-operator characteristic curve (AUROC) of 0.85 and an AUPRC of 0.53 on a held out test set. This model was also well calibrated. Finally, we analyzed the utility of this model in a decision theoretic framework to identify regions of ROC space in which using the model increases expected utility compared to the trivial always negative or always positive classifiers.
Acute kidney injury (AKI) is a common and serious complication after a surgery which is associated with morbidity and mortality. The majority of existing perioperative AKI risk score prediction models are limited in their generalizability and do not fully utilize the physiological intraoperative time-series data. Thus, there is a need for intelligent, accurate, and robust systems, able to leverage information from large-scale data to predict patients risk of developing postoperative AKI. A retrospective single-center cohort of 2,911 adult patients who underwent surgery at the University of Florida Health has been used for this study. We used machine learning and statistical analysis techniques to develop perioperative models to predict the risk of AKI (risk during the first 3 days, 7 days, and until the discharge day) before and after the surgery. In particular, we examined the improvement in risk prediction by incorporating three intraoperative physiologic time series data, i.e., mean arterial blood pressure, minimum alveolar concentration, and heart rate. For an individual patient, the preoperative model produces a probabilistic AKI risk score, which will be enriched by integrating intraoperative statistical features through a machine learning stacking approach inside a random forest classifier. We compared the performance of our model based on the area under the receiver operating characteristics curve (AUROC), accuracy and net reclassification improvement (NRI). The predictive performance of the proposed model is better than the preoperative data only model. For AKI-7day outcome: The AUC was 0.86 (accuracy was 0.78) in the proposed model, while the preoperative AUC was 0.84 (accuracy 0.76). Furthermore, with the integration of intraoperative features, we were able to classify patients who were misclassified in the preoperative model.
Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.
Acute kidney injury (AKI) in critically ill patients is associated with significant morbidity and mortality. Development of novel methods to identify patients with AKI earlier will allow for testing of novel strategies to prevent or reduce the complications of AKI. We developed data-driven prediction models to estimate the risk of new AKI onset. We generated models from clinical notes within the first 24 hours following intensive care unit (ICU) admission extracted from Medical Information Mart for Intensive Care III (MIMIC-III). From the clinical notes, we generated clinically meaningful word and concept representations and embeddings, respectively. Five supervised learning classifiers and knowledge-guided deep learning architecture were used to construct prediction models. The best configuration yielded a competitive AUC of 0.779. Our work suggests that natural language processing of clinical notes can be applied to assist clinicians in identifying the risk of incident AKI onset in critically ill patients upon admission to the ICU.
Motivation: Electronic health record (EHR) data provides a new venue to elucidate disease comorbidities and latent phenotypes for precision medicine. To fully exploit its potential, a realistic data generative process of the EHR data needs to be modelled. We present MixEHR-S to jointly infer specialist-disease topics from the EHR data. As the key contribution, we model the specialist assignments and ICD-coded diagnoses as the latent topics based on patients underlying disease topic mixture in a novel unified supervised hierarchical Bayesian topic model. For efficient inference, we developed a closed-form collapsed variational inference algorithm to learn the model distributions of MixEHR-S. We applied MixEHR-S to two independent large-scale EHR databases in Quebec with three targeted applications: (1) Congenital Heart Disease (CHD) diagnostic prediction among 154,775 patients; (2) Chronic obstructive pulmonary disease (COPD) diagnostic prediction among 73,791 patients; (3) future insulin treatment prediction among 78,712 patients diagnosed with diabetes as a mean to assess the disease exacerbation. In all three applications, MixEHR-S conferred clinically meaningful latent topics among the most predictive latent topics and achieved superior target prediction accuracy compared to the existing methods, providing opportunities for prioritizing high-risk patients for healthcare services. MixEHR-S source code and scripts of the experiments are freely available at https://github.com/li-lab-mcgill/mixehrS