No Arabic abstract
Acute kidney injury (AKI) is a common and serious complication after a surgery which is associated with morbidity and mortality. The majority of existing perioperative AKI risk score prediction models are limited in their generalizability and do not fully utilize the physiological intraoperative time-series data. Thus, there is a need for intelligent, accurate, and robust systems, able to leverage information from large-scale data to predict patients risk of developing postoperative AKI. A retrospective single-center cohort of 2,911 adult patients who underwent surgery at the University of Florida Health has been used for this study. We used machine learning and statistical analysis techniques to develop perioperative models to predict the risk of AKI (risk during the first 3 days, 7 days, and until the discharge day) before and after the surgery. In particular, we examined the improvement in risk prediction by incorporating three intraoperative physiologic time series data, i.e., mean arterial blood pressure, minimum alveolar concentration, and heart rate. For an individual patient, the preoperative model produces a probabilistic AKI risk score, which will be enriched by integrating intraoperative statistical features through a machine learning stacking approach inside a random forest classifier. We compared the performance of our model based on the area under the receiver operating characteristics curve (AUROC), accuracy and net reclassification improvement (NRI). The predictive performance of the proposed model is better than the preoperative data only model. For AKI-7day outcome: The AUC was 0.86 (accuracy was 0.78) in the proposed model, while the preoperative AUC was 0.84 (accuracy 0.76). Furthermore, with the integration of intraoperative features, we were able to classify patients who were misclassified in the preoperative model.
Patients with Acute Kidney Injury (AKI) increase mortality, morbidity, and long-term adverse events. Therefore, early identification of AKI may improve renal function recovery, decrease comorbidities, and further improve patients survival. To control certain risk factors and develop targeted prevention strategies are important to reduce the risk of AKI. Drug-drug interactions and drug-disease interactions are critical issues for AKI. Typical statistical approaches cannot handle the complexity of drug-drug and drug-disease interactions. In this paper, we propose a novel learning algorithm, Deep Rule Forests (DRF), which discovers rules from multilayer tree models as the combinations of drug usages and disease indications to help identify such interactions. We found that several disease and drug usages are considered having significant impact on the occurrence of AKI. Our experimental results also show that the DRF model performs comparatively better than typical tree-based and other state-of-the-art algorithms in terms of prediction accuracy and model interpretability.
The incidence of Acute Kidney Injury (AKI) commonly happens in the Intensive Care Unit (ICU) patients, especially in the adults, which is an independent risk factor affecting short-term and long-term mortality. Though researchers in recent years highlight the early prediction of AKI, the performance of existing models are not precise enough. The objective of this research is to precisely predict AKI by means of Convolutional Neural Network on Electronic Health Record (EHR) data. The data sets used in this research are two public Electronic Health Record (EHR) databases: MIMIC-III and eICU database. In this study, we take several Convolutional Neural Network models to train and test our AKI predictor, which can precisely predict whether a certain patient will suffer from AKI after admission in ICU according to the last measurements of the 16 blood gas and demographic features. The research is based on Kidney Disease Improving Global Outcomes (KDIGO) criteria for AKI definition. Our work greatly improves the AKI prediction precision, and the best AUROC is up to 0.988 on MIMIC-III data set and 0.936 on eICU data set, both of which outperform the state-of-art predictors. And the dimension of the input vector used in this predictor is much fewer than that used in other existing researches. Compared with the existing AKI predictors, the predictor in this work greatly improves the precision of early prediction of AKI by using the Convolutional Neural Network architecture and a more concise input vector. Early and precise prediction of AKI will bring much benefit to the decision of treatment, so it is believed that our work is a very helpful clinical application.
Acute kidney injury (AKI) in critically ill patients is associated with significant morbidity and mortality. Development of novel methods to identify patients with AKI earlier will allow for testing of novel strategies to prevent or reduce the complications of AKI. We developed data-driven prediction models to estimate the risk of new AKI onset. We generated models from clinical notes within the first 24 hours following intensive care unit (ICU) admission extracted from Medical Information Mart for Intensive Care III (MIMIC-III). From the clinical notes, we generated clinically meaningful word and concept representations and embeddings, respectively. Five supervised learning classifiers and knowledge-guided deep learning architecture were used to construct prediction models. The best configuration yielded a competitive AUC of 0.779. Our work suggests that natural language processing of clinical notes can be applied to assist clinicians in identifying the risk of incident AKI onset in critically ill patients upon admission to the ICU.
We increasingly live in a data-driven world, with diverse kinds of data distributed across many locations. In some cases, the datasets are collected from multiple locations, such as sensors (e.g., mobile phones and street cameras) spread throughout a geographic region. The data may need to be analyzed close to where they are produced, particularly when the applications require low latency, high, low cost, user privacy, and regulatory constraints. In other cases, large datasets are distributed across public clouds, private clouds, or edge-cloud computing sites with more plentiful computation, storage, bandwidth, and energy resources. Often, some portion of the analysis may take place on the end-host or edge cloud (to respect user privacy and reduce the volume of data) while relying on remote clouds to complete the analysis (to leverage greater computation and storage resources). Wide-area data analytics is any analysis of data that is generated by, or stored at, geographically dispersed entities. Over the past few years, several parts of the computer science research community have started to explore effective ways to analyze data spread over multiple locations. In particular, several areas of systems research - including databases, distributed systems, computer networking, and security and privacy - have delved into these topics. These research subcommunities often focus on different aspects of the problem, consider different motivating applications and use cases, and design and evaluate their solutions differently. To address these challenges the Computing Community Consortium (CCC) convened a 1.5-day workshop focused on wide-area data analytics in October 2019. This report summarizes the challenges discussed and the conclusions generated at the workshop.
To test the hypothesis that accuracy, discrimination, and precision in predicting postoperative complications improve when using both preoperative and intraoperative data input features versus preoperative data alone. Models that predict postoperative complications often ignore important intraoperative physiological changes. Incorporation of intraoperative physiological data may improve model performance. This retrospective cohort analysis included 52,529 inpatient surgeries at a single institution during a 5 year period. Random forest machine learning models in the validated MySurgeryRisk platform made patient-level predictions for three postoperative complications and mortality during hospital admission using electronic health record data and patient neighborhood characteristics. For each outcome, one model trained with preoperative data alone and one model trained with both preoperative and intraoperative data. Models were compared by accuracy, discrimination (expressed as AUROC), precision (expressed as AUPRC), and reclassification indices (NRI). Machine learning models incorporating both preoperative and intraoperative data had greater accuracy, discrimination, and precision than models using preoperative data alone for predicting all three postoperative complications (intensive care unit length of stay >48 hours, mechanical ventilation >48 hours, and neurological complications including delirium) and in-hospital mortality (accuracy: 88% vs. 77%, AUROC: 0.93 vs. 0.87, AUPRC: 0.21 vs. 0.15). Overall reclassification improvement was 2.9-10.0% for complications and 11.2% for in-hospital mortality. Incorporating both preoperative and intraoperative data significantly increased accuracy, discrimination, and precision for machine learning models predicting postoperative complications.