Do you want to publish a course? Click here

Biologically-informed neural networks guide mechanistic modeling from sparse experimental data

56   0   0.0 ( 0 )
 Added by John Lagergren
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Biologically-informed neural networks (BINNs), an extension of physics-informed neural networks [1], are introduced and used to discover the underlying dynamics of biological systems from sparse experimental data. In the present work, BINNs are trained in a supervised learning framework to approximate in vitro cell biology assay experiments while respecting a generalized form of the governing reaction-diffusion partial differential equation (PDE). By allowing the diffusion and reaction terms to be multilayer perceptrons (MLPs), the nonlinear forms of these terms can be learned while simultaneously converging to the solution of the governing PDE. Further, the trained MLPs are used to guide the selection of biologically interpretable mechanistic forms of the PDE terms which provides new insights into the biological and physical mechanisms that govern the dynamics of the observed system. The method is evaluated on sparse real-world data from wound healing assays with varying initial cell densities [2].



rate research

Read More

Near-wall blood flow and wall shear stress (WSS) regulate major forms of cardiovascular disease, yet they are challenging to quantify with high fidelity. Patient-specific computational and experimental measurement of WSS suffers from uncertainty, low resolution, and noise issues. Physics-informed neural networks (PINN) provide a flexible deep learning framework to integrate mathematical equations governing blood flow with measurement data. By leveraging knowledge about the governing equations (herein, Navier-Stokes), PINN overcomes the large data requirement in deep learning. In this study, it was shown how PINN could be used to improve WSS quantification in diseased arterial flows. Specifically, blood flow problems where the inlet and outlet boundary conditions were not known were solved by assimilating very few measurement points. Uncertainty in boundary conditions is a common feature in patient-specific computational fluid dynamics models. It was shown that PINN could use sparse velocity measurements away from the wall to quantify WSS with very high accuracy even without full knowledge of the boundary conditions. Examples in idealized stenosis and aneurysm models were considered demonstrating how partial knowledge about the flow physics could be combined with partial measurements to obtain accurate near-wall blood flow data. The proposed hybrid data-driven and physics-based deep learning framework has high potential in transforming high-fidelity near-wall hemodynamics modeling in cardiovascular disease.
Although reproducibility is a core tenet of the scientific method, it remains challenging to reproduce many results. Surprisingly, this also holds true for computational results in domains such as systems biology where there have been extensive standardization efforts. For example, Tiwari et al. recently found that they could only repeat 50% of published simulation results in systems biology. Toward improving the reproducibility of computational systems research, we identified several resources that investigators can leverage to make their research more accessible, executable, and comprehensible by others. In particular, we identified several domain standards and curation services, as well as powerful approaches pioneered by the software engineering industry that we believe many investigators could adopt. Together, we believe these approaches could substantially enhance the reproducibility of systems biology research. In turn, we believe enhanced reproducibility would accelerate the development of more sophisticated models that could inform precision medicine and synthetic biology.
The exploration of epidemic dynamics on dynamically evolving (adaptive) networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few good observables) that usefully summarize the overall (macroscopic, systems level) behavior. Trying to obtain reduced, small size, accurate models in terms of these few statistical observables - that is, coarse-graining the full network epidemic model to a small but useful macroscopic one - is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This will be accomplished through Diffusion Maps, a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We will discuss potential extensions of the approach, as well as possible shortcomings.
Multifidelity simulation methodologies are often used in an attempt to judiciously combine low-fidelity and high-fidelity simulation results in an accuracy-increasing, cost-saving way. Candidates for this approach are simulation methodologies for which there are fidelity differences connected with significant computational cost differences. Physics-informed Neural Networks (PINNs) are candidates for these types of approaches due to the significant difference in training times required when different fidelities (expressed in terms of architecture width and depth as well as optimization criteria) are employed. In this paper, we propose a particular multifidelity approach applied to PINNs that exploits low-rank structure. We demonstrate that width, depth, and optimization criteria can be used as parameters related to model fidelity, and show numerical justification of cost differences in training due to fidelity parameter choices. We test our multifidelity scheme on various canonical forward PDE models that have been presented in the emerging PINNs literature.
Amid the pandemic of 2019 novel coronavirus disease (COVID-19) infected by SARS-CoV-2, a vast amount of drug research for prevention and treatment has been quickly conducted, but these efforts have been unsuccessful thus far. Our objective is to prioritize repurposable drugs using a drug repurposing pipeline that systematically integrates multiple SARS-CoV-2 and drug interactions, deep graph neural networks, and in-vitro/population-based validations. We first collected all the available drugs (n= 3,635) involved in COVID-19 patient treatment through CTDbase. We built a SARS-CoV-2 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to derive the candidate representation based on the biological interactions. We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and electronic health records. We highlight the top 22 drugs including Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug combinations that may synergistically target COVID-19. In summary, we demonstrated that the integration of extensive interactions, deep neural networks, and rigorous validation can facilitate the rapid identification of candidate drugs for COVID-19 treatment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا