Do you want to publish a course? Click here

Practical Resources for Enhancing the Reproducibility of Mechanistic Modeling in Systems Biology

119   0   0.0 ( 0 )
 Added by Jonathan Karr
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Although reproducibility is a core tenet of the scientific method, it remains challenging to reproduce many results. Surprisingly, this also holds true for computational results in domains such as systems biology where there have been extensive standardization efforts. For example, Tiwari et al. recently found that they could only repeat 50% of published simulation results in systems biology. Toward improving the reproducibility of computational systems research, we identified several resources that investigators can leverage to make their research more accessible, executable, and comprehensible by others. In particular, we identified several domain standards and curation services, as well as powerful approaches pioneered by the software engineering industry that we believe many investigators could adopt. Together, we believe these approaches could substantially enhance the reproducibility of systems biology research. In turn, we believe enhanced reproducibility would accelerate the development of more sophisticated models that could inform precision medicine and synthetic biology.



rate research

Read More

Antimicrobial resistance is an emerging global health crisis that is undermining advances in modern medicine and, if unmitigated, threatens to kill 10 million people per year worldwide by 2050. Research over the last decade has demonstrated that the differences between genetically identical cells in the same environment can lead to drug resistance. Fluctuations in gene expression, modulated by gene regulatory networks, can lead to non-genetic heterogeneity that results in the fractional killing of microbial populations causing drug therapies to fail; this non-genetic drug resistance can enhance the probability of acquiring genetic drug resistance mutations. Mathematical models of gene networks can elucidate general principles underlying drug resistance, predict the evolution of resistance, and guide drug resistance experiments in the laboratory. Cells genetically engineered to carry synthetic gene networks regulating drug resistance genes allow for controlled, quantitative experiments on the role of non-genetic heterogeneity in the development of drug resistance. In this perspective article, we emphasize the contributions that mathematical, computational, and synthetic gene network models play in advancing our understanding of antimicrobial resistance to discover effective therapies against drug-resistant infections.
Summary: More sophisticated models are needed to address problems in bioscience, synthetic biology, and precision medicine. To help facilitate the collaboration needed for such models, the community developed the Simulation Experiment Description Markup Language (SED-ML), a common format for describing simulations. However, the utility of SED-ML has been hampered by limited support for SED-ML among modeling software tools and by different interpretations of SED-ML among the tools that support the format. To help modelers debug their simulations and to push the community to use SED-ML consistently, we developed a tool for validating SED-ML files. We have used the validator to correct the official SED-ML example files. We plan to use the validator to correct the files in the BioModels database so that they can be simulated. We anticipate that the validator will be a valuable tool for developing more predictive simulations and that the validator will help increase the adoption and interoperability of SED-ML. Availability: The validator is freely available as a webform, HTTP API, command-line program, and Python package at https://run.biosimulations.org/utils/validate and https://pypi.org/project/biosimulators-utils. The validator is also embedded into interfaces to 11 simulation tools. The source code is openly available as described in the Supplementary data. Contact: [email protected]
The drive for reproducibility in the computational sciences has provoked discussion and effort across a broad range of perspectives: technological, legislative/policy, education, and publishing. Discussion on these topics is not new, but the need to adopt standards for reproducibility of claims made based on computational results is now clear to researchers, publishers and policymakers alike. Many technologies exist to support and promote reproduction of computational results: containerisation tools like Docker, literate programming approaches such as Sweave, knitr, iPython or cloud environments like Amazon Web Services. But these technologies are tied to specific programming languages (e.g. Sweave/knitr to R; iPython to Python) or to platforms (e.g. Docker for 64-bit Linux environments only). To date, no single approach is able to span the broad range of technologies and platforms represented in computational biology and biotechnology. To enable reproducibility across computational biology, we demonstrate an approach and provide a set of tools that is suitable for all computational work and is not tied to a particular programming language or platform. We present published examples from a series of papers in different areas of computational biology, spanning the major languages and technologies in the field (Python/R/MATLAB/Fortran/C/Java). Our approach produces a transparent and flexible process for replication and recomputation of results. Ultimately, its most valuable aspect is the decoupling of methods in computational biology from their implementation. Separating the how (method) of a publication from the where (implementation) promotes genuinely open science and benefits the scientific community as a whole.
The phenomena of stochasticity in biochemical processes have been intriguing life scientists for the past few decades. We now know that living cells take advantage of stochasticity in some cases and counteract stochastic effects in others. The source of intrinsic stochasticity in biomolecular systems are random timings of individual reactions, which cumulatively drive the variability in outputs of such systems. Despite the acknowledged relevance of stochasticity in the functioning of living cells no rigorous method have been proposed to precisely identify sources of variability. In this paper we propose a novel methodology that allows us to calculate contributions of individual reactions into the variability of a systems output. We demonstrate that some reactions have dramatically different effects on noise than others. Surprisingly, in the class of open conversion systems that serve as an approximate model of signal transduction, the degradation of an output contributes half of the total noise. We also demonstrate the importance of degradation in other relevant systems and propose a degradation feedback control mechanism that has the capability of an effective noise suppression. Application of our method to some well studied biochemical systems such as: gene expression, Michaelis-Menten enzyme kinetics, and the p53 system indicates that our methodology reveals an unprecedented insight into the origins of variability in biochemical systems. For many systems an analytical decomposition is not available; therefore the method has been implemented as a Matlab package and is available from the authors upon request.
Bone remodeling involves the coordinated removal of bone by osteoclasts and addition of bone by osteoblasts, a process that is modulated by the prevailing mechanical environment. In this paper a fully coupled model of bone remodeling is developed, based on coupling a bone cell population model with a micromechanical homogenization scheme of bone stiffness. While the former model considers biochemical regulatory mechanisms between bone cells such as the RANK-RANKL-OPG pathway and action of TGF-beta, the latter model allows for accurate upscaling of the mechanical properties of bone. Importantly, we consider bone remodeling as being controlled proportionally to the microscopic strain energy density, on the observation scale where the sensing of the mechanical loading takes place, estimated by means of continuum micromechanics-based strain concentration. This approach allows to address two fundamental questions of bone biology: (i) How do biochemical changes influence bone remodeling and so affect the composition and mechanical properties of bone? and (ii) What mechanisms are responsible for mechanoregulation of bone remodeling? Numerical studies highlight the conceptual advantage of this new approach compared to conventional phenomenological models. It is demonstrated that the proposed model is able to simulate changes of the bone constituent volume fractions that are in qualitative agreement with experimental observations for osteoporotic and disuse syndromes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا